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Jan Outrata Palacký University Olomouc, Czech Republic
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Jan Outrata Palacký University Olomouc, Czech Republic
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Základní horizontální logolink

Logolink je tvořen logem Evropského sociálního fondu, Ev-
ropské unie, logem Ministerstva školství, mládeže a tělový-
chovy, logem Operačního programu Vzdělávání pro konku-
renceschopnost, a je doplněn sloganem.
Pořadí, velikost, proporce, vzdálenost jednotlivých log a slo-
ganu od sebe je pevně dána tímto manuálem viz strana 15.
Slogan je nutné použít vždy. U malých propagačních 
předmětů (viz strana 44) platí výjimka a slogan není nut-
né použít.

Barevnost a vzhled log jsou pevně dány manuály vizuálního 
stylu pro jednotlivá loga.
Tento manuál řeší pouze jejich vzájemné proporce a rozmís-
tění vzhledem k dalšímu použití logolinku na různých tisko-
vých, propagačních a informačních materiálech.

Popis základního horizontálního logolinku se sloganem

13

Základní horizontální verze logolinku v češtině

Základní horizontální verze logolinku v angličtině

 

Základní jednobarevná horizontální verze logolinku v češtině

Základní jednobarevná horizontální verze logolinku v angličtině
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Christian Jäkel and Stefan E. Schmidt

Finding Concepts with Unexpected Multi-Label Objects Based on
Shared Subspace Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

HongJie Zhai, Makoto Haraguchi, Yoshiaki Okubo, and HeYu Liu



Steps Towards Achieving Distributivity in Formal Concept Analysis . . . . . 105
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Preface

CLA 2018 was held in Olomouc, Czech Republic, and it was organized by Dept.
of Computer Science, Palacký University Olomouc from 12 until 14 June 2018.
The CLA conference is an international conference dedicated to Formal Concept
Analysis (FCA) and areas closely related to FCA such as data mining, informa-
tion retrieval, knowledge management, data and knowledge engineering, logic,
algebra and lattice theory. CLA provides a forum for researchers, practitioners,
and students.
The program of the conference included four keynote talks given by the following
distinguished researchers: Edouard Machery (Center for Philosophy of Science
at the University of Pittsburgh, USA), Pauli Miettinen (Max-Planck-Institut für
Informatik, Saarbrücken, Germany), Lakhdar Sais (CRIL “Centre de Recherche
en Informatique de Lens”, France) and Filip Železný (Czech Technical University
in Prague).
This volume includes the selected papers and the abstracts of the invited talks.
This year, 41 papers were submitted, from which 17 papers were accepted as
regular papers and 6 as short presentations.
We would like to thank here the contributing authors for their valuable work,
the members of the program committee and the external reviewers who analyzed
the papers with care. Then we would also like to thank the steering committee
of CLA for giving us the occasion of leading this edition of CLA, the conference
participants for their participation and support, and people in charge of the
organization.
We also thank the Easychair conference system as it made easier most of our
administration tasks related to paper submission, selection, and reviewing. Last
but not least we thank Jan Outrata, who assembled the proceedings from the
LATEX files of the individual contributions that we gave him.

June 2018 Dmitry I. Ignatov
Lhouari Nourine

Program Chairs of CLA 2018





Relational Machine Learning

Filip Železný

Czech Technical University in Prague, Czech Republic

Abstract. I will explain the main concepts of relational machine learning, or more

precisely, those parts of it employing logic as the knowledge-representation formalism.

The talk will not cover other relational approaches such as graph-mining. I will follow

what I consider the three main stages of the field’s historical development. First, I will

visit the roots of relational learning lying in the area of inductive logic programming.

Here, one learns logical theories from examples, formalizing the problem as search in

a clause subsumption lattice. A newer stream of research called statistical relational

learning extended the logical underpinnings with probabilistic inference. I will illustrate

this with an example of a logical graphical probabilistic model. Most recently, relational

learning has received a new impetus from the current revival of (deep) neural networks.

I will exemplify some promising crossovers of the two fields, including the paradigm of

Lifted Relational Neural Networks conceived in my lab.





Psychological Theories of Concepts

Edouard Machery

University of Pittsburgh, USA

Abstract. In this talk, I will review classic and more recent theories of concepts,

including prototype, example, and theory theories of concepts. We will also look at the

modeling of concepts in psychology by means of causal bayes network and generative,

hierarchical bayesian models.





Towards Cross-Fertilization between Data
Mining and Constraints

Lakhdar Sais

Cril, France

Abstract. In this talk, we overview our contributions to data mining and more gener-

ally to the cross-fertilization between data mining, constraint programming and propo-

sitional satisfiability. We will focus on three contributions. First, we show how propo-

sitional satisfiability (SAT) can be used to model and solve problems in data mining.

As an illustration, we present a SAT-based declarative approach for itemset, associ-

ation rules and sequences mining. Then, we present an original use of data mining

techniques to compress Boolean formulas. Finally, we discuss how symmetries widely

investigated in Constraint Programming (CP) and Propositional Satisfiability (SAT)

can be extended to deal with data mining problems.





Boolean Tensor Factorizations – and Beyond

Pauli Miettinen

Max-Planck-Institut, Germany

Abstract. Boolean matrix factorization (BMF) has become a popular method in data

mining, with applications ranging from bioinformatics to lifted inference and multi-label

classification. Tensor factorizations (over the standard algebra) have gained increasing

interest in data analysis community in the recent years, and they have been applied

to network analysis, dynamic networks, and to simplify deep neural networks, among

others. Boolean tensor factorization (BTF) – a natural combination of BMF and tensors

– can be seen as a generalization of BMF, where instead of a single binary relation

(i.e. a matrix), we factorize a higher-arity relation (or a collection of binary relations

over the same entities). In this talk I will cover what will happen when we merge ideas

from standard tensor factorizations with Boolean algebra, discussing the computational

complexity, possible algorithmic ideas, and potential applications. I will also cover some

hybrid approaches that merge continuous and Boolean decompositions.





K-Chains Problem and Why it Matters for
Extremal Contexts

Bogdan Chornomaz

markyz.karabas@gmail.com

Abstract. Here we discuss a problem of arranging k linear orders on
n elements to maximize the number of sets that can be obtained as
intersections of their initial intervals. We argue that this problem can
shed light on a hard problem of characterizing formal contexts of bounded
VC dimension, extremal with respect to the number of their objects
and attributes. To tackle this problem we introduce limit objects, which
capture their asymptotics, and propose, for all k, a tentative optimal
solution. We prove that, under additional hypothesis of symmetry, it is
indeed optimal for k = 3.

1 Introduction

As it was shown by Alexandre Albano and the author [2, 3], the growth of
Vapnik-Chervonekis (VC) dimension is, in essence, the only reason for the ex-
ponential growth of formal concept lattices. Any formal context of bounded
VC-dimension k has its lattice bounded in size by a polynomial in the number
of its join-irreducible elements n, specifically |L| ≤ f(n, k), where

f(n, k) :=
k−1∑

i=0

(
n

i

)
.

This bound itself can be traced back to a well-known lemma of Sauer and She-
lah [9, 10]. Here and further n denotes the standard n-element set {1, . . . , n}.

Lemma 1 (Sauer-Shelah) If A is a family of subsets of n and |A| > f(n, k),
then A shatters some k-set.

Apart from FCA perspective, this problem can be formulated in purely
lattice-theoretical terms by putting a doubly founded (or, less generally, a finite)
lattice into correspondence with its standard context. With this identification,
which we will use throughout the paper, objects and attributes become join-
irreducible and meet-irreducible elements, and the VC-dimension of a lattice L
is defined as the largest integer k for which a boolean lattice on k elements B(k)
can be order-embedded into L, see [3, Lemma 1]. Lattices on n objects of VC-
dimension at most k with f(n, k) elements are called (n, k+ 1)-extremal. We use
k + 1 instead of k to emphasize that these lattices do not allow an embedding
of B(k + 1), or, alternatively, do not shatter any (k + 1)-set.

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 9–23,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
Olomouc, 2018.



A notable feature of (n, k+1)-extremal lattices is that they can be completely
characterized, in a feasible fashion, through the doubling construction [2, 3], or
through their canonical bases [1]. One crucial disadvantage of this approach,
however, is that while the number of objects n for a lattice is bounded, there
is no estimate or restriction on the number of its attributes m. However, from
the duality principle, attributes and objects are interchangeable, so instead we
might be interested in maximizing a lattice with respect to max(m,n), m + n,
αn+ βm or n ·m, where the latter is a good estimate for the size of the formal
context in matrix form. An adequate theory of extremal contexts is thus calling
for resolution of problems of a kind:

Problem 1 Characterize concept lattices of formal contexts (G,M, I) of VC-
dimension at most k, maximal in size with respect to σ(|G|, |M |), where σ(n,m) =
n+m, or σ(n,m) = n ·m, or σ(n,m) = αn+ βm.

An example of a more nuanced conjecture could be as follows:

Conjecture 1 Maximal in size concept lattice of a formal context (G,M, I) of
VC-dimension at most k, such that |G|+ |M | = 2n, and such that k divides n,
is the Cartesian product of k chains of length n/k − 1 each:

L =×
k

C
(n
k

)
,

where C(l) is an l-element chain. The size of L is (n/k)
k
.

At the moment, these problems seem too hard to approach. A first easy step
could be to construct an (n, k + 1)-extremal lattice, which, at the same time,
would minimize the number of attributes. Such lattices will be called (n, k+ 1)-
doubly extremal. For k = 1 the construction is trivial, and further on we will
show that for k = 2 doubly extremal lattice is exactly the interval lattice. For
k ≥ 3, however, things start getting bleak. We thus resort to an even simpler
problem, which will be the central object of this investigation, and, as we hope,
can provide a key insight towards constructing doubly extremal lattices. We now
state this problem formally, and postpone the discussion of how it is connected
with doubly extremal lattices till Section 2.

Definition 1 (Configuration) For a fixed k, let a (discrete) k-configuration
C = {�i | i = 1, . . . , k} be a set of k linear orderings of n. We say that C
generates a feasible set Y ⊆ n, if Y can be obtained as an intersection of initial
intervals of ≤i, that is,

Y =
k⋂

i=1

(xi]i

for some xi ∈ n, where (v]i = {u ∈ n | u �i v}. As a matter of convenience, the
empty set is considered to be non-feasible.

10 Bogdan Chornomaz



Problem 2 (k-chains problem) Describe a k-configuration C that generates
the maximal number of sets, and the number |C| of its feasible sets. In particular,
what is the asymptotic behavior of |C| when n approaches infinity, that is, what
is the value of the limit

lim
n→∞

sup
C

|C|(
n
k

) = lim
n→∞

sup
C

k! · |C|
nk

, (1)

and which families of configurations correspond to this limit.

As it turns out, as long as we are interested in asymptotics, it is natural to
consider continuous objects called limit configurations, introduced in Section 3,
which enable us to present configuration families with specific asymptotics as a
single object.

Problem 2, however, is still too hard to solve in its full extent. In Section 4 we
present a tentative optimal family of k-configurations and its continuous coun-
terpart. This object satisfies several sufficient conditions for optimality, which,
due to the lack of space, were not included in the paper. However, in Section 5 we
prove that, under additional condition of symmetry, the configuration for k = 3
is indeed optimal. We also note that the general machinery of the proof holds
for arbitrary k. The only part that is specific to k = 3 is purely combinatorial
Lemma 6. This lemma can be formulated for arbitrary k, but we were unable to
handle the general case.

2 Doubly Extremal Lattices and the K-Chains Problem

The starting point for the estimation of the number of meet-irreducible elements
(attributes) in extremal lattices is the following lemma.

Lemma 2 Any (n + k, k + 1)-extremal lattice L has at least k(n + 1) meet-
irreducible elements, arranged in k disjoint chains of length n + 1 each. Every
such chain contains exactly one element of rank i, for i ∈ k − 1, . . . n+ k − 1.

Proof. We proved this lemma in another paper [5, Theorem 3]. The proof uses
the technique of extremal decompositions, which was developed in that paper,
and is rather involved, so we have no possibility to reproduce it here.

We call the chains of meet-irreducible elements from Lemma 2 the principal
chains. Figure 1 gives an illustration of this construction. It is also trivial [5,
Lemma 7] that, for k = 2, the interval lattices are (n, k + 1)-extremal with no
other attributes than those, provided by Lemma 2. Thus:

Corollary 3 The interval lattices are (n, 3)-doubly extremal.

For larger k, however, Lemma 2 does not describe all meet-irreducible ele-
ments. The technique of extremal decompositions from [5] can be used to prove
that, for example, any (6, 4)-extremal lattice has at least 3 meet-irreducible ele-
ments apart from the principal chains.

K-Chains Problem and Why it Matters for Extremal Contexts 11



a b c d a b c d

Fig. 1. The principal chains of
meet-irreducible elements for
(4, 3)- and (4, 4)-extremal lattices.

Fig. 2. The interval lattices are
(n, 3)-doubly extremal.

Instead of looking for additional meet-irreducible elements, we can reverse
the question and ask how the principal chains should be constructed in order to
maximize the number of elements they generate, that is, of elements of the lattice
that can be constructed from them by intersections. Answering this question may
be quite helpful for the construction of doubly extremal lattices, because of the
following plausible conjecture:

Conjecture 2 In a doubly extremal lattice the principal chains are optimal in
the sense of generating the (asymptotically) maximal possible number of ele-
ments.

Notice that every principal chain corresponds to a k-almost ordering of the
set of its objects, where k-almost ordering of a set X is a partial order on X, in
which all elements are comparable, except for k−1 smallest elements, which are
incomparable with each other. For the (4, 3)- and (4, 4)-extremal lattices from
Figure 1, the corresponding orderings are a ≤ b ≤ c ≤ d and d ≤ c ≤ b ≤ a for
the former, and b, c ≤ a ≤ d; b, d ≤ a ≤ c and c, d ≤ a ≤ b for the latter. There
is a one-to-one correspondence between the elements of the principal chains and
the initial intervals of these orderings.

Thus, in order to estimate the size of the fragment of an extremal lattice
generated by the principal chains, we have to find a family of k almost orderings
which is is optimal, in a sense that it generates the (asymptotically) maximal
number of sets as intersections of its initial intervals. This, however, is literally
Problem 2, but with almost orderings instead of orderings. But it is not a prob-
lem, as switching between almost orderings and orderings does not change the
asymptotics as n growth to infinity.

Apart from this, it can be easily shown that for a fixed configuration, the
family of its feasible sets, together with the empty set, forms a convex geometry.
It is known, however, that the convex geometries can be considered a natural
generalization of the (n, k)-extremal lattices [4]. Studying the k-chains problem
can thus be treated as studying extremal contexts with specific constraints on
the structure of their objects and attributes.

3 Asymptotics and a Limit Object

Let us take a k-configuration C. We say that an ordered k-tuple (m1, . . . ,mk),
mi ∈ n, is feasible and corresponds to X, if

12 Bogdan Chornomaz



1. X =
⋂
i(mi]i is a nonempty (and thus feasible) set,

2. mi is maximal in X with respect to �i, for all i = 1, . . . , k.

Notice that for every feasible set X and every ordering �i there is always an
element mi ∈ X, maximal with respect to �i, the k-tuple of these elements is
feasible, and it is a unique feasible tuple that corresponds to X. Thus, feasible
sets and feasible tuples are in one-to-one correspondence. On the other hand,
while we can associate with an arbitrary k-tuple a = (a1, . . . , am) a feasible
(or empty) set A =

⋂
i(ai]i, in general, a will not be feasible for A, even for

nonempty A, as the following example shows:

Example 1 Let k = 2 and n = 3, 1 �1 2 �1 3 and 1 �2 3 �2 2. Then
for the configuration C = {�1,�2} there are four feasible sets: {1, 2, 3}, {1, 2},
{1, 3} and {1}; and their feasible tuples are (3, 2), (2, 2), (3, 3) and (1, 1). The
tuple (2, 3) is not feasible, because although it corresponds to the feasible set
{1} = (2]1 ∩ (3]2, elements 2 and 3 do not lie in {1}, and thus can not be
maximal in it with respect to any ordering.

By putting feasible sets and feasible tuples into correspondence, we conclude
that there are at most kn feasible sets. But this estimate is way too crude, as
the following statement holds:

Statement 1 For a k-configuration C and a feasible tuple (m1, . . . ,mk), such
that all mi are different, a tuple (mσ(1),mσ(2), . . . ,mσ(k)) is not feasible for any
nontrivial permutation σ.

Proof. Let us take a nontrivial σ and fix j such that σ(j) 6= j. Then mσ(j) ≺j mj ,

and thus mj /∈ Y =
⋂k
i=1(mσ(i)]i. But then mj cannot be in a feasible tuple,

corresponding to Y , a contradiction.

Thus, there can be at most
(
n
k

)
≈ nk/k! feasible sets with distinct compo-

nents, where a feasible set is a k-set in n, for which there is a corresponding
feasible tuple. As for the tuples with repeating elements, their number will be
asymptotically negligible comparing to nk, so we can disregard them. This clar-
ification also explains the choice of the denominator in the limit in (1).

When analyzing a k-configuration, or rather a family of configurations Cn,
parametrized with n, we will be interested in the volume vol of Cn:

vol(Cn) = lim
n→∞

|Cn|(
n
k

) = lim
n→∞

k! · |Cn|
nk

≤ 1. (2)

As long as we are concentrating on the asymptotics, it will be convenient
for us to define a notion of a limit object, which approximates the behavior of
the sequence of configurations as n goes to infinity. Good example of such limit
objects are graphons [7] for dense graphs, or flag algebras [8] for set families with
prohibited configurations.
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Our definition of a limit configuration exploits the fact that for a given k-
configuration C, every element from the base set n naturally corresponds to a
tuple in nk, whose coordinates represent the relative position of the element
in corresponding chains. Further on, by measure on [0, 1]k we understand a
measure on the σ-algebra of Borel sets. The set [0, 1]k is equipped with a pack
of projections πj : [0, 1]k → [0, 1], πj(x) = xk, where x = (x1, . . . , xk). The
Lebesgue measure of a set B is denoted by |B|.
Definition 2 (Limit configuration) Limit k-configuration µ is a measure on
[0, 1]k, such that for every measurable set B ⊆ [0, 1], every j = 1, . . . k, and every
projection πj : [0, 1]k → [0, 1], it holds: |B| = µ

(
π−1j [B]

)
.

Usually we deal with a measure given in a form of a measurable weight
function w on a 1-dimensional manifold M ⊆ [0, 1]k, defined as a line integral
µ(X) =

∫
x∈X w(x)ds(x), for any measurable X ⊆M. In this case we denote the

configuration as (M, w).

For a limit configuration µ, the axes, with their natural order, represent the
chains; the measure µ represents relative positions of elements in the chains; and
the restriction on projections reflects the fact that the elements are uniformly
distributed along each chain.

A k-tuple (x1, . . . , xk), xi ∈ [0, 1]k (the tuple itself is thus in [0, 1]k
2

), is
feasible, if πi(xi) ≤ πi(xj), for all i, j. Here, for convenience, we suppose that the
order on the axes is reversed, so that the top of the chains corresponds to the
origin of coordinates. We denote the set of feasible tuples by F ⊆ [0, 1]k

2

, denoted
F(M) = F ∩Mk when the configuration takes form (M, w). The volume vol(µ)
is thus defined as

vol(µ) = k! ·
∫

(x1,...,xk)∈F

k∏

i=1

dµ(xi) = k! · µk(F), (3)

where µk is a measure on [0, 1]k
2

, obtained as a product of k copies of µ.
It is possible, and easy, to show that for every discrete configuration it is

possible to construct a limit object, so that, for large n, their volumes would
be arbitrary close. And, on the contrary, for every continuous configuration it is
possible to construct a family of discrete configurations, which approximate it
with respect to volume. The proofs are omitted due to space restrictions.

We conclude the section with a couple of examples of limit configurations.

Example 2 (Discrete configuration) For a given k-configuration C on n, let
us define a limit k-configuration µC in the following way. Let

P ⊆ [0, 1]k =
⋃

i∈n
×

l=1,...,k

[ol(i)/n− 1/n, ol(i)/n],

where ol(i) is a position of i with respect to �l in decreasing order, that is, if
a �l b �l c, then ol(a) = 3, ol(b) = 2 and ol(c) = 1. We then take µC to be a
measure, uniformly distributed over P , that is

µC(X) = |X ∩ P |/|P |.
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This construction gives a “continuous version” of the discrete configuration C,
vol(C) ≤ vol(µC), and for reasonable C, the difference between the volumes is
small for large n.

Example 3 (Random configuration) Let us take a k-configuration C on n
by choosing �i to be a random ordering of n, taken independently for all i. It is
easy to see that for a k-tuple (x1, . . . , xk) with distinct elements, the probability
of being feasible is 1/kk (x1 is the smallest with respect to �1 with probability
1/k, etc.). Thus,

E vol(C) =
k!

kk
.

A limit configuration, corresponding to this construction, is simply the Lebesgue
measure µ(X) = |X|, and vol(µ) = E vol(C).

4 Tentative Solution

Author’s intuition prompts, and the rest of the paper will be devoted to sub-
stantiate this claim, that the following k-configuration can be asymptotically
optimal for the k-chains problem, at least for k = 2 and 3:

Definition 3 (Tentative optimal configuration) Let us fix k and n = k ·
m, and let us split n into k disjoint bunches of m elements each: a1, . . . am;
b1, . . . bm; . . . ; z1, . . . , zm, where a, b, . . . , z is a symbolic representation of these
k bunches. Then the asymptotically optimal k-configuration is Ok,n = {�a,�b
, . . . ,�z}, where

�a = a1 ≥ · · · ≥ am ≥ bm ≥ · · · ≥ zm ≥ bm−1 ≥ · · · ≥ zm−1 ≥ b1 ≥ · · · ≥ z1;

�b = b1 ≥ · · · ≥ bm ≥ am ≥ · · · ≥ zm ≥ am−1 ≥ · · · ≥ zm−1 ≥ a1 ≥ · · · ≥ z1;

. . .

�z = z1 ≥ · · · ≥ zm ≥ am ≥ · · · ≥ ym ≥ am−1 ≥ · · · ≥ ym−1 ≥ a1 ≥ · · · ≥ y1.

Figure 3 below illustrates this construction.
It can be the case that the tentative optimal construction can be optimized

further, for example by swapping ai and bi in �c. These modifications, however,
are asymptotically negligible, and we thus refrain from trying them for the sake
of simplicity. Note also, that for k = 2 orderings �a and �b will be inverse to
each other, and it is easy to see that the corresponding lattice, as expected, will
be the interval lattice on n elements, that is, (n, 3)-doubly extremal lattice. The
corresponding limit configuration is defined as follows:

Definition 4 (Optimal limit configuration) The limit configuration Ok,∞ =
(M, w), which corresponds to the tentative optimal configuration family Ok,n, is
defined as

M⊆ [0, 1]k =
⋃

i=1,...,k

[c, ei],
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where c, ei ∈ [0, 1]k, c = (1/k, . . . , 1/k), ei,j = 0, i 6= j, ei,i = 1, and [c, ei] is a
closed line segment. The weight function is w(x) = 1/kL, where L is the length
of the line segment [c, ei].

Figure 4 below depicts the optimal limit configuration for k = 3. In order to
calculate the volume of the optimal configuration, and to understand better the
arrangement of its feasible sets, we now will describe these sets explicitly. The
proof of the following proposition is by meticulous examination of the feasibility
conditions for the given configuration, and will be omitted due to the lack of
space.

a1
a2
a3

b3
c3

b2
c2

b1
c1

b1
b2
b3
a3
c3
a2
c2
a1
c1

c1
c2
c3
a3
b3
a2
b2
a1
b1

Fig. 3. The tentative optimal con-
figuration O3,9.

A
1
3 1

B

1
3

1

C

1
3

1

{ci}
x

y

{ai}

{bi}z

Fig. 4. The optimal limit configuration O3,∞.
The triple {x, y, z} is a feasible set, as long as
πA(x) ≤ πA(z).

Proposition 4 (Feasible sets of the optimal limit configuration.) A set
{x1, . . . , xk} ⊆ Ok,∞ is feasible iff one of the following mutually exclusive con-
ditions hold:

1. all {xi} lie on different line segments, xi ∈ [c, ei]. The corresponding feasible
tuple is (x1, x2, . . . , xk);

2. or all {xi}, except for two of them, xp and xq, lie on different line segments:
xi ∈ [c, ei], i 6= p, q. Elements xp and xq lie on one of the remaining segments
[c, ep], and for xq it holds:

πq(xq) ≤ πq(xi),

for all i = 1, . . . , k. The corresponding feasible tuple is (x1, x2, . . . , xk).

Figure 4 shows a feasible configuration corresponding to the second case of
the above proposition. This, together with volume formula (3), enables us to
easily calculate the volume of the optimal solution:
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Proposition 5 (Volume of the optimal limit configuration)

vol(Ok,∞) =
k!

kk−1
.

Proof.

vol(Ok,∞) = k!

(
1

k

)k
·
[
1 + k(k − 1)

∫ 1

0

(1− x)k−1dx

]

=
k!

kk
[1 + k(k − 1)/k] =

k · k!

kk
=

k!

kk−1
.

For two and three chains we thus get: vol(O2,∞) = 1 and vol(O3,∞) = 2
3 .

5 Symmetry

An important feature which holds for Ok,∞, is that it is symmetric in the fol-
lowing sense:

Definition 5 (Symmetry) We say that a limit k-configuration (or simply a
measure) µ is symmetric if µ (ρσ[X]) = µ(X), for every permutation σ on k
and every measurable X ⊆ [0, 1]k, where ρσ : [0, 1]k → [0, 1]k is a coordinate
permutation function: ρσ(x1, . . . , xk) = (xσ(1), . . . , xσ(k)).

In symmetric configurations all chains look alike, and it is reasonable to
suppose that the optimal configuration would be symmetric. In this section we
prove that, assuming symmetry, our tentative solution for k = 3 is the best
possible. We start with the following simple combinatorial statement:

Lemma 6 Let (A,B,C) be a subdivision of the set 9 into three nonintersecting
subsets of size three each, and let a1, a2, a3; b1, b2, b3 and c1, c2 and c3 be
enumerations of A, B and C correspondingly. We say that such triple of enu-
merations is feasible if a1 < b1, c1, b2 < a2, c2 and c3 < a1, b1. Then, for a fixed
subdivision, the maximal number of feasible triples is 24.

Note. This lemma can be reformulated for larger, or even for arbitrary k, and
an optimal upper bound can then be used for an upper bound for the symmetric
case for arbitrary dimension. The solution strategy which we undertook there
can not, however, be easily scaled, so finding such bound may prove problematic.

Proof. In order to be able to compare subdivisions, let us introduce the fol-
lowing notations. For a subdivision S = (A,B,C), we denote the number of
feasible triples of enumerations by n(S). For subdivisions S = (A,B,C) and
S′ = (A′, B′, C ′) we introduce the shift operation [S → S′], which translates
the enumerations of S into the enumerations of S′, so that the relative order of
elements inside every set remains the same. An example of the shift is given on
Figure 5 below. Every shift is one-to-one and onto, and the inverse of [S → S′]
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is [S′ → S]. For a subdivision S′, we say that S is dominated by S′, denoted
S � S′, if for every feasible enumeration triple α of S, the triple [S →′ S]α is
feasible for S′. Trivially, we might look for an optimal subdivision only among
those, which are not dominated by any other.

Now, let us proceed with finding an optimal configuration, and note that the
problem is symmetric, that is, for a feasible triple (a1, a2, a3; b1, b2, b3; c1, c2, c3)
for the subdivision (A,B,C), the triple (b2, b1, b3; a2, a1, a3; c2, c1, c3) will be fea-
sible for the subdivision (B,A,C), and so on. Here we changed the order of each
enumeration in the same way as we changed the order of sets in the subdivision.
Thus, without restricting generality, we can assume that the element 1 lies in A.

As 1 is the smallest element in 9, we can see that the only element from the
enumeration that can be 1 is a1: if, to the contrary, we take, say, a2 = 1, then
the constraint b2 < a2 will not hold. Now, we claim that an optimal position
for A is {1, 8, 9}. Indeed, for a subdivision S = (A,B,C), let S′ = (A′, B′, C ′) be
the subdivision, obtained from S′ by shifting the second and the third elements
of A to the right. It is easy to see that in this case the subdivision S′ dominates
S, see Figure 5 for the illustration.

1 1 2 1 3 3 3 2 2
S

1 1 2 1 3 3 2 3 2
S′

A:

B:

C:

Fig. 5. Shifting the last two elements of A to the right. Numbers show the enumerations
of A, B and C. Note that the unfeasible enumeration triple becomes feasible and that
the second subdivision dominates the first one.

Now, in order for a subdivision to be optimal, we only need to optimally
subdivide the set {2, . . . , 7} into B and C. As before, without losing generality,
we may assume that the smallest element, that is 2, lies in B. Note that assigning
b3 = 2 breaks the constraint c3 < b3, but it is, in principle, possible for a feasible
enumeration to have b1 = 2 or b2 = 2, so we can not apply the same simple
argument as we did for the optimal position of A.

However, there are not so many ways to make such subdivision: in fact, there
are ten, so we may check them manually. In order to simplify it even further,
we note that all subdivisions with 2, 3 ∈ B are dominated by B = {2, 3, 7} and
C = {4, 5, 6}, and the subdivisions with 2 ∈ B and 6, 7 ∈ C are dominated
by B = {3, 4, 5} and C = {2, 6, 7}. Other five we check manually, and obtain
that there are several choices for an optimal subdivision S∗ = (B,C), with
n(S∗) = 12. The situation is subsumed on Figure 6.

Now, an optimal subdivision for S = (A,B,C) is obtained by combining the
optimal position of A with one of the optimal subdivisions for S∗ = (B,C). In
this case, n(S) = 24, finishing the proof of the lemma. See Figure 7 for example.

For this part we introduce additional definitions for measures on [0, 1]k.
The total size of a measure µ is just µ([0, 1]k). Thus, if µ is a k-configuration,
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� n(S) = 12

� n(S) = 12

2 n(S) = 12

2 1 3 : 6
2 3 1 : 43
1 2 2 3 : 2

n(S) = 12

2 1 3 : 6
2 3 3 1 : 2
1 2 3 : 42

n(S) = 12

2 3 : 4
2 1 3 3 : 2
2 3 2 3 : 2
1 1 2 3 3 2 : 1
1 3 3 1 2 2 : 1

n(S) = 10

2 3 : 8
1 2 : 4

n(S) = 12

Fig. 6. Case study for an optimal subdivision of the set {2, . . . , 7} into B and C. Each
case is a subdivision, with a list of the corresponding feasible enumerations, together
with the total number of those enumerations.

S

A: B: C:

Fig. 7. An optimal subdivision S = (A,B,C) with n(S) = 12. This subdivision is
also the one which is obtained from the limit object O3,∞, see Theorem 9 for the
explanation.

then its total size is 1. A measure µ is diagonal-free if µ (D) = 0, where D =
{x ∈ [0, 1]k | xi = xj , for some i 6= j}. And µ is continuous on projections if
µ
(
π−1i (X)

)
= 0, for every i and every X ⊆ [0, 1] such that |X| = 0. Again, it is

trivial to see that any k-configuration is continuous on projections. The volume
vol(µ) is defined by the same formula (3) as for the k-configurations.

Lemma 7 For a symmetric continuous on projections diagonal-free measure µ
on [0, 1]3 of total size 1, it holds

vol(µ) ≤ 3!

33−1
=

2

3
.

Proof. Let us fix such µ. The proof strategy is to show that for every feasible
tuple on µ, only a specific fraction of tuples, obtained from it by permutations,
may be feasible.

By (3), we evaluate the volume of µ as

vol(µ) = 3!

∫

(x,y,z)∈FD
dµ(x)µ(y)µ(z),

where FD = F\D3 is a diagonal-free version of F . Note, that the elements of
FD can have coinciding coordinates. Indeed, due to exclusion of the diagonal,
for an element (x, y, z) ∈ FD it holds that x1 6= x2 6= x3, but it may hold that,
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for example, x1 = y1. But finite size of µ and its continuousness on projections
ensure that the volume of these points is 0. For example:

∫

(x,y,z)∈FD
x1=y1

dµ(x)µ(y)µ(z) ≤
∫

(x,y,z)∈[0,1]9
x1=y1

dµ(x)µ(y)µ(z)

=

∫

x∈[0,1]3

(∫

y∈π−1
1 (x1)

dµ(y)

)
dµ(x) = 0.

Thus, we may restrict FD even further, to the set F∗D of points with all
distinct coordinates. Now, with every x, y and z we associate one of 9! order-
ings o(x, y, z) of their coordinates, represented as formal letters x1, . . . , z3. For
example:





x = (0.1, 0.5, 0.8)

y = (0.3, 0.6, 0.7)

z = (0.4, 0.9, 0.2)

⇒ o(x, y, z) = (x1, z3, y1, z1, x3, y2, y3, x2, z2).

Also, the triple (x, y, z) is feasible if and only if o(x, y, z) is feasible, that is, if
the inequalities x1 ≤ y1, z1; y2 ≤ x2, z2 and z3 ≤ x3, y3 hold in o. Note that we
can, in a straightforward fashion, represent o as a subdivision of 9 into sets X, Y
and Z together with three relative enumerations ex, ey and ez correspondingly.
In the example above:

o(x, y, z) = (x1, z3, y1, z1, x3, y2, y3, x2, z2)

= (xzyzxyyxz, 132, 123, 312).

Now, if we apply permutations σx, σy and σz to the coordinates of x, y and
z, we get

o(x, y, z) =
(
(X,Y, Z), ex, ey, ez

)
,

o(σx(x), σy(y), σz(z)) =
(
(X,Y, Z), σx(ex), σy(ey), σz(ez)

)
.

So,

vol(µ) = 3!

∫

(x,y,z)∈F∗D
dµ(x)µ(y)µ(z) = 3!

∫

o(x,y,z)∈Fo

dµ(x)µ(y)µ(z)

=
3!

3!3

∑

σx,σy,σz

∫

o(σx(x),σy(y),σz(z))∈Fo

dµ(σx(x))µ(σy(y))µ(σz(z))

=
3!

3!3

∑

σx,σy,σz

∫
(
X,Y,Z,σx(ex),σy(ey),σz(ez)

)
∈Fo

dµ(x)µ(y)µ(z)

=
3!

3!3

∑

(X,Y,Z)

n(X,Y, Z)

∫

(x,y,z)∈[X,Y,Z]

dµ(x)µ(y)µ(z)
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≤ 3! · 24

3!3

∑

(X,Y,Z)

∫

(x,y,z)∈[X,Y,Z]

dµ(x)µ(y)µ(z)

=
2

3

∫

(x,y,z)∈[0,1]9
dµ(x)µ(y)µ(z) =

2

3
.

where Fo is a set of feasible orderings of 9, n(X,Y, Z) is a number of feasible
enumerations for a subdivision (X,Y, Z), and [X,Y, Z] is a subset in [0, 1]9, for
which the coordinates correspond to a subdivision (X,Y, Z). Here we used an
estimation n(X,Y, Z) ≤ 24 obtained in Lemma 6. Note that this bound is exact,
and it is reached by the measure that is concentrated in the areas, for which
n(X,Y, Z) is maximal an equals 24.

Lemma 8 For a symmetric k-configuration µ there is a family {µa}a∈(1,∞) of

symmetric continuous on projections diagonal-free measures on [0, 1]k of total
size 1, such that lima→1 vol(µa) = vol(µ).

Proof. Due to the lack of space, we prove this lemma only for k = 2. The similar,
but more elaborated proof can be carried over for arbitrary k.

For a fixed α ∈ (1,∞) we split [0, 1]2 into five nonintersecting parts:

LL = {(x, y) | y = αx, x > 0}, LU = {(x, y) | x = αy, y > 0},
CL = {(x, y) | y < αx, x > 0}, CU = {(x, y) | x < αy, y > 0},
Z = [0, 1]2\ (LL ∪ LU ∪ CL ∪ CU ) .

We define the mapping ·∗ : (LL ∪ LU ∪ CL ∪ CU ) 7→ [0, 1]2 as:

(u, v)∗ =

{
(u, αv), (u, v) ∈ LL ∪ CL,
(αu, v), (u, v) ∈ LU ∪ CU .

Note that ·∗ is one-to-one on CL ∪ CU , and (LL ∪ LU )
∗

= D. Now, we define µα
as

µα(X) = µ
(
X ∩ (CL ∪ CU )

)∗
+

1

2
µ
(
X ∩ LL

)∗
+

1

2
µ
(
X ∩ LU

)∗
,

for every measurableX ⊆ [0, 1]2. Informally speaking, we construct µα by shrink-
ing the triangle below the diagonal along y, the triangle above the diagonal
along x, and splitting in half the measure concentrated along the diagonal. The
construction is illustrated on Figure 8.

It is trivial to check that µα is symmetric, diagonal-free, continuous on pro-
jections and has total size 1. Notice also that µ(Y ) = µα([·∗]−1Y ), for every
measurable Y . The only thing we need to check is that the volumes of µa con-
verge towards vol(µ).

vol(µα) = 2

∫

(x,y)∈F\Z2

dµα(x)µα(y)
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1

1

LL

LU

CL

CU

Fig. 8. Construction of µα.

= 2

∫

(x,y)∈F+

dµα(x)µα(y)− 2

∫

(x,y)∈F+\F
dµα(x)µα(y)

= 2

∫

(x,y)∈F+

dµ(x∗)µα(y∗)− 2

∫

(x,y)∈F+\F
dµα(x)µα(y)

= 2

∫

(x,y)∈(F\Z2)∗
dµ(x)µα(y)− 2

∫

(x,y)∈F+\F
dµα(x)µα(y).

where F ⊆ F+ = [·∗]−1(F\Z2)∗. Then

|vol(µα)− vol(µ)| ≤ 2

∫

(x,y)∈(F\Z2)∗∆F
dµ(x)µ(y)

+ 2

∫

(x,y)∈
(
F+\F

)∗ dµ(x)µ(y),

where ∆ denotes the symmetric difference. We estimate two summands sepa-
rately. If (x, y) ∈ (F\Z2)∗∆F then something like x1 ≤ y1 ≤ αx1 holds (perhaps
along different coordinate, perhaps with x and y swapped). Then
∫

(x,y)∈(F\Z2)∗∆F
dµ(x)µ(y) ≤ C

∫

{(x,y) | x1≤y1≤αx1}
dµ(x)µ(y)

≤ C
∫

x

(∫

y∈[x1,α+x1]

dµ(y)

)
dµ(x) ≤ C

∣∣[x1, α+ x1]
∣∣ = Cα.

for some constant C, which depends only on k. For the second estimate let us
consider what it means for (x, y) to lie in F+\F . First of all, as ·∗ is one-to-one on
CL∪CU , then either x or y (or both) lie in LL∪LU . Say, x ∈ LL, which means that
x1 = αx2. Then (x, y) /∈ F but (x′, y) ∈ F , where x′ = (x2, x1) = (x2, αx2). Yet
again, something like x2 ≤ y2 ≤ αx2 holds (perhaps along different coordinate,
perhaps with x and y swapped). After applying ·∗, to change from F+\F to
(F+\F)

∗
, these restriction can only change by α. So, just like for the previous

summand, we infer
∫

(x,y)∈
(
F+\F

)∗ dµ(x)µ(y) ≤ Dα2.
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for some constant D, which depends only on k. The combination of these two
estimates finishes the proof.

Theorem 9 (Optimality under symmetry assumption) For a symmetric
limit 3-configuration µ, it holds: vol(µ) ≤ 3!/33−1 = 2/3, that is, vol(µ) ≤
vol(O3,∞). Thus, the configuration O3,∞ is optimal symmetric 3-configuration.

Proof. By Lemma 7, this bound holds for arbitrary symmetric continuous on
projections diagonal-free measure η of total size 1, and by Lemma 8, every sym-
metric k-configuration µ can be approximated (in volume) by such measures
with arbitrary precision.
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mann, D., Cellier, P., Ferré, S. (eds). Formal Concept Analysis. ICFCA 2017. Lec-
ture Notes in Computer Science, vol, 10308, 39–55. Springer (2017)

2. Albano, A., Chornomaz, B.: Why concept lattices are large: Extremal theory for the
number of minimal generators and formal concepts. In Proceedings of the Twelfth
International Conference on Concept Lattices and Their Applications (CLA 2015).
73–86 (2015)

3. Albano, A., Chornomaz, B.: Why concept lattices are large: Extremal theory for
generators, concepts and VC-dimension. International Journal of General Sys-
tems 46, 440–457 (2017)

4. Chornomaz, B.: Convex geometries are extremal for generalized Sauer-
Shelah bound. Accepted to The Electronic Journal of Combinatorics (2018)
https:/hal.archives-ouvertes.fr/hal-01358594

5. Chornomaz, B.: Lower bound on the number of meet-irreducible elements in ex-
tremal lattices. Visnyk of V.N.Karazin Kharkiv National University. Ser. Mathe-
matics, Applied Mathematics and Mechanics 86, 26–48 (2017). https:/hal.archives-
ouvertes.fr/hal-01773276

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin-Heidelberg, (1999)

7. Lovász, L.: Large Networks and Graph Limits. American Mathematical Society.
Providence, RI, (2012)

8. Razborov, A.: Flag algebras. Journal of Symbolic Logic 72(4), 1239-1282 (2007)
9. Sauer, N.: On the density of families of sets. Journal of Combinatorial Theory,

Series A 13(1), 145 – 147 (1972)
10. Shelah, S.: A combinatorial problem: stability and order for models and theories

in infinitary languages. Pacific J. Math. 41(1), 247–261 (1972)

K-Chains Problem and Why it Matters for Extremal Contexts 23





A First Study on What MDL Can Do for FCA

Tatiana Makhalova1,2, Sergei O. Kuznetsov1, and Amedeo Napoli2

1 National Research University Higher School of Economics,
3 Kochnovsky Proezd, Moscow, Russia

2 LORIA, (CNRS – Inria – U. of Lorraine), BP 239
Vandœuvre-lès-Nancy, France

tpmakhalova@hse.ru, skuznetsov@hse.ru, amedeo.napoil@loria.fr

Abstract. Formal Concept Analysis can be considered as a classifica-
tion engine able to build classes of objects with a description or concepts
and to organize these concepts within a concept lattice. The concept lat-
tice can be navigated for selecting significant concepts. Then the problem
of finding significant concepts among the potential exponential number
of concepts arises. Some measures exist that can be used for focusing on
interesting concepts such as support, stability, and other. MDL (mini-
mum description length) is also a good candidate that was rarely used
in FCA by now for such objective. In this paper we argue that MDL
can give FCA practitioners a good measure for selecting significant and
representative concepts.

1 Introduction

Formal concept analysis (FCA) plays an important role in Data Mining and Ma-
chine Learning. Concept lattices support mainly unsupervised settings, improv-
ing tasks such as building taxonomies and ontologies, computing implications
and association rules, clustering and solving classification tasks. These tasks in
practice are coupled with the problem of exponential explosion of the number of
formal concepts.

By now, to tackle this issue, a lot of different approaches have been proposed,
including data pre- and postprocessing, background knowledge incorporation,
computing approximate concepts (see [9] for an overview). As a result, one ex-
pects to get a small set of interesting, meaningful, non-redundant concepts [3].

In this paper, we focus on the characterization of such a small set of concepts.
Instead of using an interesting measure in postprocessing step, we propose to
rely on the minimum description length (MDL) principle [7], which allows one
to select small sets of diverse and interpretable concepts. Providing the best
lossless compression of the data, the MDL optimal sets of patterns (itemsets)
automatically provides a balance between the quality of fit of the data and the
complexity of the model without any user-defined parameters to be set [1].

In this paper we propose a first study on the application of the MDL principle
in FCA settings. To the best of our knowledge, this is one of the first papers to
study the effective use of MDL in the framework of FCA.

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 25–36,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
Olomouc, 2018.



The rest of the paper has the following structure. In Section 2 we remind
the basic definition used in FCA and discuss how FCA can be used to solve
classification problem. Section 3 introduces the MDL principle. In Section 4 we
discuss what MDL can bring to FCA. Section 5 gives conclusion and directions
for future work.

2 Preliminaries

In this section we recall the main notions that are used in the paper. We study
attribute sets of formal concepts, which have several alternative names, such as
itemset, intent, or pattern. We discuss the application of FCA in unsupervised
and supervised settings.

2.1 FCA. Basic Notions

Here we briefly recall FCA terminology [5]. A formal context is a triple (G,M, I),
where G = {g1, g2, ..., gn} is called a set objects, M = {m1,m2, . . . ,mk} is
called a set attributes and I ⊆ G×M is a relation called incidence relation, i.e.
(g,m) ∈ I if the object g has the attribute m. The derivation operators (·)′ are
defined for A ⊆ G and B ⊆M as follows:

A′ = {m ∈M | ∀g ∈ A : gIm}
B′ = {g ∈ G | ∀m ∈ B : gIm}

A′ is the set of attributes common to all objects of A and B′ is the set of objects
sharing all attributes of B. An object g is said to contain a pattern (set of items)
B ⊆ M if B ⊆ g′. The double application of (·)′ is a closure operator, i.e. (·)′′
is extensive, idempotent and monotone. Sets A ⊆ G, B ⊆M , such that A = A′′

and B = B′′, are said to be closed.
A (formal) concept is a pair (A,B), where A ⊆ G, B ⊆ M and A′ = B,

B′ = A. A is called the (formal) extent and B is called the (formal) intent of the
concept (A,B). A partial order 6 is defined on the set of concepts as follows:
(A,B) ≤ (C,D) iff A ⊆ C (D ⊆ B), a pair (A,B) is a subconcept of (C,D),
while (C,D) is a superconcept of (A,B).

The number of formal concepts grows exponentially w.r.t. the size of a formal
context, i.e. the number of objects in G and attributes in M . Thus, it becomes
almost impossible to analyze and interpret the whole set of generated concepts.
Pattern discovery techniques are designed to solve this problem. The goal of
pattern discovery within the framework of FCA is to find a non-redundant set of
concepts that are interesting w.r.t. specified constrains/interestingness criterion.
The criterion can be applied to both intent and extent, whereas pattern discovery
in general is related solely to the itemset assessment.

Example. Let us consider the toy example given in Table 1. We will use either D1

or D2 to compute classifiers and the remaining objects will be used to assess the
quality of the classifiers. The set of attributes M includes columns m1, . . . ,m9.
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Table 1. An example of dataset.

d
a
ta

p
a
rt

it
io

n
s

objects m
1

:
4

le
g
s

m
2

:
h

a
ir

s

m
3

:
ch

a
n

g
e

si
z
e

m
4

:
c
o
ld

-
re

si
st

a
n
t

m
5

:d
o

n
o
t

re
le

a
se

C
O

2

m
6

:
b

la
ck

-
w

h
it

e

m
7

:
y
e
ll

o
w

-
b

ro
w

n
m

8
:

g
re

e
n

m
9

:
g
ra

y

ta
rg

e
t
w

:
a
n

im
a
l

D
2

D
1

g1 dog × × × × +
g2 cat × × × × +
g3 frog × × × +
g4 car × × –
g5 ball × × × × –
g6 chair × × × × –
g7 fur coat × × × × –
g8 sunflower × × –
g9 fish × × × +
g10 leopard × × × × +
g11 table × × × × –

The additional attribute “target”, i.e., class labels, is not taken into account
under unsupervised settings.

Filtering concepts based on their extent and/or intent belongs to class of
unsupervised problems, since any supplemental information is unavailable. In
the next subsection we consider the problem of concept selection in supervised
settings.

2.2 FCA under Supervised Settings: Concept-based Classifiers

In supervised settings along with the objects and their descriptions an additional
attribute w is given. It specifies the class of an object. We denote the set of its
values by ε.

We shall confine ourselves to two-class classification and study the simplest
case, where each object belongs to a single class. In the defined settings ε =
{+,−}. We consider the case where a set of objects G = G+ ∪ G− is divided
into 2 disjoint subsets, i.e., a set of positive examples G+, negative examples
G−. In practice, a set Gτ of unlabeled examples appears as well. The objects
are described by attributes from M and the target attribute w is defined as
follows: gIw = “ + ” for g ∈ G+ and gIw = “− ” for g ∈ G−. The objects from
G+ ∪ G− compose training and test sets, which are used to generate concepts
and to estimate quality of classifiers, respectively.

It is assumed that there exists an unknown function that maps each object
g ∈ G (or its description g′ ⊆M) to an element in ε. The goal is to reconstruct
as accurately as possible the unknown function using an observable subset of
labeled objects. To do that, one builds classifiers, which can be constructed by
means of FCA as follows.

For each concept (A,B) a class label e ∈ ε is defined by majority of labeled
objects in the extent, i.e. class((A,B)) = arg maxe∈ε |Ae|/|A|, where Ae = Ge ∩
A. To classify an unlabeled object g w.r.t. a pair (B, e) we set the following
classification principle:

(B, e)(g) =

{
e, if B ⊆ g′
∅, otherwise.

(1)
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Table 2. The values of quality measures (Formulas 2-5) for classifiers
{“cold-resistant”}− and {“4 legs”, “change size”}+ from the running example in Ta-
ble 1. The attribute sets of the classifiers are intents of formal concepts computed on
D1. The set {g8, g9, g10, g11} is used to assess classifiers.

classifier/
measure

{“cold-resistant”}− {“4 legs”, “change size”}+

prec |{g11}|/|{g9, g11}| = 1/2 |{g10}|/|{g10}| = 1

recall |{g11}|/|{g8, g11}| = 1/2 |{g10}|/|{g9, g10}| = 1/2

sup |{g9, g11}|/|G∗| = 1/2 |{g10}|/|G∗| = 1/4

acc |{g10, g11}|/|G∗| = 1/2 |{g10}|/|G∗| = 1/4

According to Formula 1, we get a non-empty response e from (B, e) if an
object description g′ contains attribute set B. To simplify notation we will write
B̂e instead of (B, e). In general, B could be any itemset, not necessarily closed.

The details on classification problem in terms of FCA can be found in [6,8].
To identify the best classifier a test set G∗ ⊆ G+ ∪G− is used, we will write

G∗+ and G∗− for subsets of positive and negative objects in the test set G∗, i.e., for
G∗∩G+ and G∗∩G−, respectively. In our paper we estimate classifiers using the
measures listed below and provide small examples of their usage (see Table 2).
Precision measures how many correct answers are given by the classifier:

prec(B̂e, G∗) =
∣∣∣
{
g | B̂e(g) = e, g ∈ G∗e

}∣∣∣/
∣∣∣
{
g | B̂e(g) = e, g ∈ G∗

}∣∣∣. (2)

Recall measures how many objects from a target class are characterized by
the classifier (i.e. whether a classifier is specific or general):

recall(B̂e, G∗) =
∣∣∣
{
g | B̂e(g) = e, g ∈ G∗e

}∣∣∣/|G∗e|. (3)

Support measures how many objects can be classified (correctly or not):

sup(B̂e, G∗) =
∣∣∣
{
g | B̂e(g) = e, g ∈ G∗

}∣∣∣/|G∗|. (4)

The accuracy takes into account examples from the remaining classes ε \ {e}
unclassified by B̂e:

acc(B̂e, G∗) =

∣∣∣
{
g | B̂e(g) = e, g ∈ G∗e

}
∪
{
g | B̂e(g) = ∅, g ∈ G∗c , c ∈ ε \ {e}

}∣∣∣
|G∗| .

(5)

However, other measures can also be examined [2], e.g., F1 score, AUC, etc.
In the next section we consider an ensemble of classifiers based on single

concept-based classifiers defined in Formula 1.

2.3 Concept-based Classifiers

A set of the classifiers S =
{
B̂ej

}
j∈J

, e ∈ ε with a rule for aggregation of their

responses constitute an ensemble of classifiers. We call an ensemble concept-
based classifiers (CBC) if the itemsets B are intents of formal concepts. As an
aggregation rule the following principles might be chosen: class of the majority
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of labels, classification if responses are the same class labels, the highest prior-
ity class from the set of responses.The best CBCs are those that ensure high
accuracy and have a small size of S.

Example. Let us turn back to the running example from Table 1. The supple-
mentary information on class labels (the target attribute w) is given in column
“target”. We consider the following set of classifiers:

S = {({“cold-resistant”} ,−), ({“4 legs”, “change size”} ,+)} .

As a rule for aggregation of responses we use the priority principle, let us
suppose that “–” class has higher priority than “+”, thus we can apply classifiers
from “–” class and, if the object remains unclassified, we try to classify it with
“+” class classifiers.

CBC works for g10 as follows. A classifiers with the highest priority (“–” class)
are firstly applied. Since {“cold-resistant”} 6⊆ g′10, we get an empty response and
turn to the classifiers of lower priority (“+” class). {“4 legs”, “change size”}⊆
g′10, we get “+” response and classify g10 as an member of “+” class. The object
g11 is classified as “–”, since {“cold-resistant”}⊆ g′11. g8 remains unclassified,
since we get empty responses from all classifiers in S, g9 is misclassified by
({“cold-resistant”} , –).

Thus, a formal concept is a well-interpreted, quite intuitive and handy tool
for describing subsets of objects both un- and supervised settings. However,
as it was mentioned earlier, the huge number of generated concepts hampers
interpretation of the results as well as its practical application.

In the next section we provide an approach that can be used to select a small
set of diverse concepts.

3 Minimal Description Length Principle

3.1 Describing Data with MDL . Unsupervised Settings

The MDL principle in the context of pattern mining is formulated as follows:
the best set of patterns is the set that best compresses the database [10].

The main element of this approach is a code table (CT), which is composed
of “some” itemsets with their length. The best code table minimizes the total
length in bits L(D,CT ) = L(D | CT ) + L(CT | D), where L(D | CT ) is the
length of the dataset encoded with the code table CT and L(CT | D) is the
length of the code table CT computed w.r.t. D. To encode an object g in a
dataset one needs to select a subset of disjoint itemsets that cover all attributes
of g. By u(B) = | {t ∈ D | B ∈ cover(t)} | we denote the usage of itemset B
in dataset D, i.e., how many times B is used to cover objects in D, where
U =

∑
B∈CT u(B) is the total usage of itemsets. The principles of building code

tables will be discussed further.
To define the length of an itemset we use an optimal prefix code given by

Shannon entropy, i.e., l(B) = −logPr(B), where probability is defined as follows:
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Pr(B) = u(B)/U . Thus, the itemsets with higher frequency have smaller code
lengths. The details on itemset encoding and memory that is needed to store
itemsets of code table are out of scope of this paper. Since we are interested in the
length of the description rather than in the encoding itself (materialized codes),
we consider simplified version of L(CT,D) where only terms that characterize
“specificity” of itemsets for the dataset are taken into account:

L(D | CT ) =
∑

g∈D

∑

B∈cover(g)
l(B) = −

∑

B∈CT
u(B) log

u(B)

U
,

L(CT | D) =
∑

B∈CT
code(B) + l(B),

where code(B) is the length in bits to store itemset B in a code table.

Principles of computing a code table. A code table is computed in an incremental
manner: starting from a set of single-attribute patterns, i.e. {{m} | m ∈M}.
The optimization procedure is based on adding a new itemset to the code table,
correcting the information about usage of the other itemsets in the code table,
recomputing the itemset lengths and re-encoding the data. At each iteration a
new pattern can be added or not to the code table.

A set of candidates might be composed of any kind of patterns: arbitrary
itemsets, closed ones, δ-itemsets, etc. The items in a set of candidates are sorted
w.r.t. chosen interestingness measures, in particular, in Krimp [10] patterns are
ordered by the length of itemset (its size of attribute set) and frequency.

Note that the problem of computing optimal code table implies exhaustive
search for the best combination of patterns, and in practice some heuristics are
used.

Example. Let us consider the principle of computing a CT using the running
example. The iterative process of updating a CT for class “animal” and recom-
puting the cover of D2 is described in Table 3. As candidates we use the set of
concepts sorted by area, i.e., frequency × length, the ordered list of candidates
with their areas is given in columns “Candidate set, area”. Columns “CT” cor-
respond to the CT at each iteration. The CT contains itemsets and the number
of times each itemset is used to cover objects. The covering is given in columns
“Data with covering”. At the beginning it consists of single-attribute itemsets.
The first objectm1m2m3m6 is covered by four single-attribute itemsets. The first
candidate is m1m2m3 with an area equal to 6. At the next step this candidate
is used to cover attributes in the dataset covered by single-attribute itemsets.
With the chosen candidate, the covering for two objects is changed (compare
the first two objects in columns “Data with covering” in “Step 0” and “Step
1”). Step by step a new itemset with the maximal area is added to the CT. If
a new CT compresses the data better then the old one, the itemset is accepted
to the CT, otherwise, it is removed from both the CT and the candidate set. If
the CT is changed, the usage of itemsets in the CT and area for candidates are
recomputed.
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Table 3. An iterative procedure of computing a code table for class “animal” and the
cover of D2. The names “i” and “u” stand for an itemset and its usage in covering

Step 0 Step 1

CT Data with
covering

Candidate
set, area

CT Data with
covering

Candidate
set, areai u i u

m3 4 (m1)(m2)(m3)(m6) m1m2m3, 6 m1m2m3 2 (m1m2m3)(m6) m1m3m8, 3
m1 3 (m1)(m2)(m3)(m7) m1m3, 6 m3 2 (m1m2m3)(m7) m3m4m9, 3
m2 2 (m1)(m3)(m8) m1m2m3m6, 4 m1,m4 1 (m1)(m3)(m8) m1m3, 2
m4 1 (m3)(m4)(m9) m1m2m3m7, 4 m6-m9 1 (m3)(m4)(m9)
m6-m9 1 m1m3m8, 3 m2,m5 0
m5 0 m3m4m9, 3

Step 2 Step 3

CT Data with
covering

Candidate
set, area

CT Data with
covering

Candidate
set, areai u i u

m1m2m3 2 (m1m2m3)(m6) m3m4m9, 3 m1m2m3 2 (m1m2m3)(m6)
m1m3m8 1 (m1m2m3)(m7) m1m3m8 1 (m1m2m3)(m7)
m3,m4 1 (m1m3m8) m3m4m9 1 (m1m3m8)
m6,m7,m9 1 (m3)(m4)(m9) m6,m7 1 (m3m4m9)
m1,m2,m5,m8 0 m1-m5 0

m8-m9 0

3.2 MDL under Supervised Settings

Being purely unsupervised, the MDL principle can be adapted for usage in su-
pervised settings. The idea is to find a compressed representation for objects
using code tables of each target class separately. Classes have their own code
tables. A code table consists of typical patterns and their lengths (the more typ-
ical patterns have shorter lengths). To classify a new object, its set of attributes
is covered by itemsets from code tables of each class. Then, the encoding lengths
for each class are computed and the class that corresponds to the minimal en-
coding length is assigned to the object. The length reflects typicality of an object
for a particular class (code table).

Example. Consider classification with code tables “CT1” and “CT2” from Ta-
ble 4 that have been computed on sets D1 and D2, respectively. The details on
the computing of the code tables is out of the scope of this paper (see the Krimp
algorithm [10]). Each column“CTi” contains code tables CTA and CTNA for
“animal” and “not animal” classes, respectively. Let us consider how an object
g9 is classified with the code tables from “CT1”. The main steps of the covering
of g′9 are given in Table 5. To find a covering we use a greedy strategy, i.e., we
start from the first itemset in a code table and then stop iterating over itemsets
when all attributes of the object are covered. To cover g′9 with CTNA we take the
first itemset m1m4m5m8 (see Step 1 in Table 5), it does not cover g′9, at the next
step we take the second itemset m4m9, it covers a subset of g′9 and m3 remains
uncovered (see Step 2). The iterations over itemsets from CTNA continues until
all the attributes of g9 will be covered.

Classification with code tables from Table 4 are given in Table 6. The ob-
jects are covered by itemsets from tables of “animal” and “not animal” as it
is described in Table 5). The class where the object has the shortest length is
assigned to this object.

In this section we considered how the MDL principle is used to select patterns
(itemsets) in un- and supervised settings. In the next section we study how MDL
works in the FCA framework.
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Table 4. Code tables CT1,A and CT1,NA, CT2,A and CT2,NA computed on datasets
D1 and D2, respectively. The lengths of itemsets are given with their relative size. A
shorter itemset is more typical, i.e., more often used to cover the data on which they
had been computed.

CT1 CT1

code table
“animal”, CTA

code table
“not animal”

CTNA

code table
“animal”

CTA

code table
“not animal”
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m1m2m3 2
m1m2m3 1 m1m4m5m8 1 m3m4m9 1 m1m4m5m8 1
m1m3m8 1 m4m9 2 m1m3m8 1 m4m9 2
m1 0 m1 0 m1 0 m1 0
m2 0 m2 1 m2 0 m2 1
m3 0 m3 1 m3 0 m3 2
m4 0 m4 1 m4 0 m4 1
m5 0 m5 2 m5 0 m5 2
m6 1 m6 1 m6 1 m6 1
m7 1 m7 0 m7 1 m7 1
m8 0 m8 0 m8 0 m8 0
m9 0 m9 0 m9 0 m9 0

Table 5. The steps of the covering process of object g9 by itemsets from the code
tables of classes “animal” and “not animal”, CT1,A and CT1,NA, respectively. To cover
g′9 with CT1,A we try to use every itemset from the top, i.e., m1m2m3, m1m3m8, m1,
etc. We stop when all attributes are covered. The covering procedure for CT1,A and
CT1,NA stops after m9 and m3, respectively, is being considered.

Covering with CT1 for “animals” Covering with CT1 for “not animals”

Step
Used itemset

(an attempt to cover)
Remaining attributes

in g′9 to cover
Step

Used itemset
(an attempt to cover)

Remaining attributes
in g′9 to cover

0 - m3m4m9 0 m3m4m9

1 m1m2m3 m3m4m9 1 m1m4m5m8 m3m4m9

2 m1m3m8 m3m4m9 2 m4m9 m3

3 m1 m3m4m9 3 m1 m3

4 m2 m3m4m9 4 m2 m3

5 m3 m4m9 5 m3 {∅}
6 m4 m9

...
11 m9 {∅}

4 MDL in FCA: First Steps

To show that MDL can improve the practical application of FCA, in this section
we discuss the results of experiments on the embedding of MDL within FCA.
We used the discretized datasets from LUCS-KDD repository [4]. We split the
data into 10 parts and in each of 10 experiments we use 9 of them as a training
set and one as a test set. The average performance is reported in the paper. To
compute code tables and to cover objects the Krimp algorithm [10] is used.

4.1 Descriptive Patterns. FCA in Unsupervised Settings

In unsupervised learning (where the target attribute is not given), one is inter-
ested in a small number of meaningful patterns. In our experiments we compute
the set of closed itemsets and apply the MDL principle to them. For MDL we
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Table 6. Classification with code tables (MDL-based approach) from Table 4. The
class of the code table where an object has the shortest encoding length is assigned to
the object

Encoding with itemsets animal Encoding with itemsets not animal decision

CT1

g′8 = (m3)(m7) , g′8 = (m3)(m7) , not animal
g′9 = (m3)(m4)(m9) , , g′9 = (m3)(m4m9) , , not animal
g′10 = (m1m2m3)(m7) , g′10 = (m1)(m2)(m3)(m7) , , , animal
g′11 = (m1)(m4)(m5)(m8) , , , g′11 = (m1m4m5m8) not animal

CT2
g′10 = (m1m2m3)(m7) , g′10 = (m1)(m2)(m3)(m7) , , , animal
g′11 = (m1)(m4)(m5)(m8) , , , g′11 = (m1m4m5m8) not animal

Table 7. The parameters of sets of formal concepts and their proper MDL-subsets.

dataset
nmb.

of obj.
nmb.

of attr.

nmb. of
concepts

avg. length
of intent dataset

nmb.
of obj.

nmb.
of attr.

nmb. of
concepts

avg. length
of intent

total MDL total MDL total MDL total MDL

auto 205 135 67 557 57 8.83 19.26 horse colic 368 83 173 808 101 6.96 3.92

breast 699 16 642 24 7.36 9.04 iris 150 19 107 13 3.08 3.92

car 1 728 25 12 617 94 5.12 3.47 led7 3 200 24 1 937 152 4.60 6.80

chess 28 056 58 152 753 1 675 4.85 4.32 mushroom 8 124 90 181 945 211 15.23 19.53

dermatology 366 49 16 324 47 6.98 5.70 nursery 12 960 30 176 536 392 6.53 5.56

ecoli 336 29 694 25 5.49 6.08 page blocks 5 473 44 715 45 5.79 10.27

flare 1 389 38 16 303 106 6.82 8.64 pima indians 768 38 1 609 50 4.99 5.86

glass 214 46 4 704 50 5.06 4.32 ticTacToe 958 29 42 685 160 5.44 4.02

heart 303 50 36 708 54 7.14 5.09 wine 178 68 13 170 52 5.14 3.90

hepatitis 155 52 199 954 44 8.14 5.59 zoo 101 42 4 563 17 7.34 12.24

sort itemsets in the candidate set by “length” (the cardinality of intent) and
“frequency” (the cardinality of extent).

MDL-optimal concepts are concepts whose intents are included in a code
table with a non-empty usage. The results of the experiments are given in Ta-
ble 7. For instance, the “auto” dataset consists of 205 objects and 135 binary
attributes. The total number of formal concepts is 67 557, 57 of them are MDL-
optimal.

Our experiments show that the selected itemsets might be shorter or longer
on average than the itemsets in the whole set of closed concepts (see column
“avg. length of intent” in Table 7). However, around 2% (12 % at most) of the
concepts are selected with the MDL-principle. Thus, MDL can be considered as
a threshold-free alternative for selection of interesting itemsets. It is important
to notice that the subset of MDL-optimal itemsets is composed of diverse pat-
terns and expert assumptions on interestingness of concepts can be embedded
by ordering candidates w.r.t. particular interestingness measures. Since a greedy
strategy is used to make a code table, one gets a set of diverse itemsets that are
in agreement with interestingness.

4.2 Classifier Comparison. FCA in Supervised Settings

In this section we study both the accuracy of ensembles of classifiers S and
their basic elements B̂. We also compare the accuracy of the ensembles with
commonly used classification methods, e.g., random forest, multilayer perceptron
and support vector machine.

Comparison of single classifiers. Here we consider formal concepts as single
classifiers. We study precision, recall (Formulas 2 and 3, respectively) and pre-
cision loss (Formula 6). Formula 6 is also used as a measure of overfitting, i.e.,
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cases where accuracy on a test set is worse than on a training one. If precision
loss is close to 1, we call it overfitting, the classifier makes much more errors on
a test set than on a training set. If precision loss is close to 0, we get “expected”
precision on a test set.

prloss(B̂e, G+ ∪G−) = precision(B̂e, G \G∗)− precision(B̂e, G∗) (6)

In Figure 1 we show the performance of single concepts in the following 2-
dimensional spaces: “precision” and “precision loss” (blue shapes), “recall” and
“precision loss” (green shapes). Due to lack of space we provide two typical
kinds of distributions using results for “Breast cancer” and “Wine” datasets.
Precision loss is shown on the vertical axis, recall and precision are combined in
the horizontal axis. The pictures are density plots for the (sub)set of concepts
in the chosen dimensions. Intense-colored regions correspond to the regions with
high concentration of concepts.

Let us consider the classifiers of “Breast cancer” dataset (the first line in
Figure 1). The first figure shows that most concepts have precision loss close to
0, i.e., they have similar precision both on training and test set. Classifiers with
precision loss close to 0 are preferable, since they have the “expected” precision
even on unobservable data. Let us consider the position on the horizontal axis.
The blue shape (“precision” axis) is located close to 1, it means that most
concepts have high precision on a training set. A long stretch of the green shape
along the axis means that the set of classifiers consists of both specific (having
relatively big intents) and general concepts (recall is from 0 to 1).

The second plot corresponds to MDL-optimal classifiers. In both spaces,
i.e., “precision” and “precision loss” (blue shapes), “recall” and “precision loss”
(green shapes), classifiers are concentrated in two points on the “precision loss”
axis, the bottom shape is brighter than the upper one. It means that a lot of
classifiers have similar precision on training and test sets, and there are several
classifiers that have much smaller precision on a test set (they are overfitting
classifiers). Since the blue shapes are located close to 0 on the horizontal axis,
we conclude that the classifiers are very precise on a training set. The concen-
tration of the green shapes around 0 on the horizontal axis means that most
classifiers have recall close to 0, thus, the classifiers are very specific.

Classifiers of “Wine” dataset demonstrate another typical distribution of the
classifiers. We can read the plots as it is done above. Here we discuss the key
difference between two kinds of datasets.

In our experiments, the set of classifiers on the whole set of formal concepts
was comprised of either mostly one type of classifiers with precision loss close
to 0 or two types of classifiers: with precision loss close to 0 and to 1. Thus, the
set of concept-classifiers contains either mostly non-overfitting (good) classifiers
or non- and overfitting ones. MDL-based subset usually includes both non- and
overfitted classifiers, all these classifiers are quite specific (have big intents).

A reasonable question arises: what is the accuracy of ensembles of classifiers
built on such different types of concepts? In the next paragraph we examine
the accuracy of ensembles of classifiers that are constituted by MLD-optimal
subsets.
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Fig. 1. Precision loss of the whole set of concepts (CBC), MDL-optimal subsets of
classifiers for “Breast cancer” (top row) and “Wine” (bottom row) datasets

Comparison of ensembles of classifiers In this section we compare ensem-
bles built on a set of formal concepts (“CBC”) and its MDL-optimal subset
(“MDL”) with commonly used classification methods like random forests (RFs),
multilayer perceptrons3 (MLP) and support vector machines (SVM). We study
the average accuracy on a test set, and the results are summarized in Table 8.
As it was noticed above, we split our dataset into 10 folds (9:1 for train and test
sets). The maximal accuracy over the 10 folds is also reported in the table. We
pay our attention to the number of classifiers that constitute an ensemble. The
smaller the number of classifiers the faster one can obtain the response and the
better this response can be interpreted.

Our experiments show that among itemset-based classifiers (CBC, MDL,
RF) MDL-based approach demonstrate quite good performances and have a
much smaller set of classifiers. An ensemble with a small number of classifiers
performs faster and is better interpretable. Thus, it is easier to classify with
MDL-ensembles and understand the obtained results as well.

5 Conclusion

In this paper we have addressed the problem of selecting meaningful, non-
redundant sets of formal concepts. We have proposed to use the MDL principle
and to show how the expert understanding of interestingness might be incorpo-
rated into it.

The MDL principle ensures a good compression even when the set of formal
concepts is huge (for example, 24 MDL-optimal among 6 432 concepts for “Breast
cancer”, 392 among 176 537 concepts for “nursery” dataset).

3 We select the configuration that ensures the best accuracy among the following ones:
(100:50:50),(100:50:25),(50:50:50)
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Table 8. Performance of ensembles of classifiers
Dataset name Classifier Avg. accuracy Max. acc. Avg. rule numb. Max. rule numb

breast cancer

CBC 0,86 ± 0,04 0,90 355,00 ± 7,10 361
MDL 0,94 ± 0,03 0,99 27,80 ± 0,98 30
RF 0,93 ± 0,04 0,99 30,60 ± 4,48 37
MLP 0,94 ± 0,03 0,99 – –
SVM 0,93 ± 0,03 0,99 – –

ecoli

CBC 0,84 ± 0,05 0,94 394,70 ± 14,47 410
MDL 0,77 ± 0,10 0,85 37,30 ± 2,10 40
RF 0,77 ± 0,05 0,85 1236,40 ± 532,54 1830
MLP 0,84 ± 0,03 0,88 – –
SVM 0,86 ± 0,04 0,94 – –

iris

CBC 0,93 ± 0,07 1,00 113,20 ± 5,57 119
MDL 0,94 ± 0,06 1,00 18,50 ± 1,36 20
RF 0,95 ± 0,07 1,00 169,40 ± 192,45 531
MLP 0,93 ± 0,07 1,00 – –
SVM 0,93 ± 0,07 1,00 – –

In supervised settings, MDL principle tends to choose the specific classifiers,
some of them have a precision loss close to 0.9. However, the MDL principle
ensures high classification accuracy.

One interesting direction for future work is to study how some interesting-
ness measures, such as stability, might be embedded into the MDL approach.
Another interesting direction is to study connection between the MDL principle
and Pareto optimality.
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Abstract Implicational bases are objects of interest in formal concept
analysis and its applications. Unfortunately, even the smallest base, the
Duquenne-Guigues base, has an exponential size in the worst case. In
this paper, we use results on the average number of minimal transversals
in random hypergraphs to show that the base of proper premises is, on
average, of quasi-polynomial size.

Keywords: Formal Concept Analysis, Implication Base, Average Case Analy-
sis.

1 Introduction

Computing implication bases is a task that has been shown to be costly [6],
due to their size and to the enumeration delay. Even the smallest base (the
Duquenne-Guigues base) is, in the worst case, exponential in the size of the
relation [12]. While the extremal combinatorics of implicational bases is a well
studied subject, up to now, the average case has not received a lot of attention.

In this paper, we adapt the results presented in [5] to provide some average-
case properties of implicational bases. We consider the base of proper premises
and the Duquenne-Guigues base. We bound the average size of the base of proper
premises under two statistical models and show that it is, on average, quasi-
polynomial. This implies that the size of the Duquenne-Guigues base is on aver-
age at most quasi-polynomial. We then give an almost sure lower bound for the
number of proper premises.

The paper is organized as follows: in section 2 we introduce the definitions
and notations that we use in the remainder of the paper. Section 3 contains the
main results of this work. In section 4, we discuss randomly generated contexts
and the models that are used in this paper. We then conclude and discuss future
works.

2 Definitions and Notations

In this section, we provide the definitions and results that will be used in this
paper. Most of the FCA definitions can be found in [10]. From now on, we will
omit the brackets in the notation for sets when no confusion is induced by this
simplification.

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 37–45,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
Olomouc, 2018.



2.1 Formal Concept Analysis

A formal context is a triple C = (O,A,R) in which O and A are finite sets of
objects and attributes and R ⊆ O×A is a binary relation between them. A pair
(o, a) ∈ R is read “object o has attribute a”. Formal contexts can naturally be
represented by cross tables, where a cross in the cell (o, a) means that (o, a) ∈ R.

Table 1. Toy context C.

a1 a2 a3 a4 a5

o1 × ×
o2 × × ×
o3 × × ×
o4 × ×
o5 × ×

Table 1 shows a toy context with 5 objects and 5 attributes. It will serve as
a running example throughout this paper.

Let O be a set of objects and A a set of attributes, we denote by O′ the set of
all attributes that are shared by all objects of O and A′ the set of all objects that
have all the attributes of A. More formally, O′ = {a ∈ A | ∀o ∈ O, (o, a) ∈ R}
and A′ = {o ∈ O | ∀a ∈ A, (o, a) ∈ R}.

The composition of those two operators, denoted ·′′, forms a closure operator.
A set X = X ′′ is said to be closed. A pair (O,A) with O ⊆ O, A ⊆ A, A′ = O
and O′ = A is called a (formal) concept of the (formal) context C. In this case,
we also have that A′′ = A and O′′ = O.

The set of all the concepts of a context, ordered by inclusion on either their
sets of attributes or objects forms a complete lattice. Additionally, every com-
plete lattice is isomorphic to the one formed by the concepts of a particular
context.

Definition 1. An implication (between attributes) is a pair of sets X,Y ⊆ A.
It is noted X → Y .

Definition 2. An implication X → Y is said to hold in a context C if and only
if X ′ ⊆ Y ′.

In an implication X → Y , X is called the premise and Y the conclusion.
Many implications are redundant, that is if an implication a → c holds, then
ab → c holds and is redundant. The number of implications that hold can be
quite large [12]. It is necessary to focus on the interesting ones.

Definition 3. An implication set that allows for the derivation of all implica-
tions that hold in a context, and only them, through the application of Arm-
strong’s axioms is called an implication base of the context.
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Definition 4 (Duquenne-Guigues Base). An attribute set P is a pseudo-
intent if and only if P 6= P ′′ and Q′′ ⊂ P for every pseudo-intent Q ⊂ P . The
set of all the implications P → P ′′ in which P is a pseudo-intent is called the
Duquenne-Guigues Base.

The Duquenne-Guigues Base, also called canonical base, or stem base has
first been introduced in [11] and is the smallest (cardinality-wise) of all the bases.
Here, we denote this base as Σstem. The complexity of enumerating the elements
of this base is studied in [6].

Base of Proper Premises While the Duquenne-Guigues Base is the smallest
base, the base of proper premises, or Canonical Direct Base, noted here ΣProper,
is the smallest base for which the logical closure can be computed with a single
pass. The Canonical Direct Base was initially known under five independent
definitions, shown to be equivalent by Bertet and Montjardet in [2].

For a set X of attributes, let X• be the set of attributes that are contained
in X ′′ but not in the closure of any proper subset of X, that is

X• = X ′′ \
(
X ∪

⋃

S⊂X
S′′
)
.

X is called a proper premise for attribute a if X• is not empty and a ∈ X•.

2.2 Hypergraphs and Transversals

Let V be a set of vertices. A hypergraph H is a subset of the powerset 2V . Each
E ∈ H is called an (hyper)edge of the hypergraph. A set S ⊆ V is called a
hypergraph transversal of H if it intersects every edge of H, that is S ∩ E 6=
∅,∀E ∈ H. A set S ⊆ V is called a minimal hypergraph transversal of H if
S is a transversal of H and S is minimal with respect to the subset inclusion
among all the hypergraph transversals of H. The set of all minimal hypergraph
transversals of H forms a hypergraph, that we denote Tr(H) and that is called
the transversal hypergraph.

2.3 Proper Premises as Hypergraph Transversals

In this section, we introduce a definition of the base of proper premises based
on hypergraph transversals.

Proposition 1 (from [10]). P ⊆ A is a premise of a ∈ A if and only if
(A \ o′) ∩ P 6= ∅ holds for all o ∈ O such that (o, a) 6∈ R. P is a proper premise
for a if and only if P is minimal with respect to subset inclusion for this property.

Proposition 23 from [10] uses o ↙ a instead of (o, a) 6∈ R. It is a stronger
condition that involves a maximality condition that is not necessary here.
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The set of proper premises of an attribute is equivalent to the minimal
transversals of a hypergraph induced from the context with the following propo-
sition:

Proposition 2 (From [17]). P is a premise of a if and only if P is a hyper-
graph transversal of Ha where

Ha = {A \ o′|o ∈ O, (o, a) 6∈ R}

The set of all proper premises of a is exactly the transversal hypergraph Tr(Ha).

To illustrate this link, we show the computation of the proper premises for
some attributes of Context 1. We compute the hypergraph Ha for a1, a2 and a5.
Let’s begin with attribute a1. We have to compute Ha1 = {A\o′ |o ∈ O, (o, a1) 6∈
R} and Tr(Ha1). In C, there is no cross for a1 in the rows o2, o3, o4 and o5. We
have :

Ha1 = {{a1, a3}, {a1, a5}, {a1, a2, a3}, {a1, a2, a4}}
and

Tr(Ha1) = {{a1}, {a2, a3, a5}, {a3, a4, a5}
We have the premises for a1, which give implications a2a3a5 → a1 and

a3a4a5 → a1. {a1} is also a transversal of Ha1 but can be omitted here, since
a→ a is always true.

In the same way, we compute the hypergraph and its transversal hypergraph
for the other attributes. For example,

Ha2 = {{a1, a2, a3}, {a1, a2, a4}} and Tr(Ha2) = {{a1}, {a2}, {a3, a4}}

Ha5 = {{a1, a5}, {a3, a4, a5}} and Tr(Ha5) = {{a5}, {a1, a3}, {a1, a4}}
The set of all proper premises of ai is exactly the transversal hypergraph Tr(Hai),
∀i ∈ {1, . . . , 5}, to which we remove the trivial transversals (ai is always a
transversal for Hai). The base of proper premises for context C is the union of
the proper premises for each attributes:

ΣProper(C) =
⋃

a∈A
Tr(Ha) \ {a}

3 Average Size of an Implication Base

In [17], Distel and Borchmann provided expected numbers of proper premises
and concept intents. Their approach, like the one in [5], uses the Erdős-Rényi
model [8] to generate random hypergraphs. However, in [17], the probability for
each vertex to appear in a hyperedge is a fixed 0.5 (by definition of the model)
whereas the approach presented in [5] consider this probability as a variable of
the problem and is thus more general.
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3.1 Single Parameter Model

In the following, we assume all sets to be finite, and that |O| is polynomial in
|A|. We call p the probability that an object o has an attribute a. An object
having an attribute is independent from other attributes and objects. We denote
by q = 1−p the probability that (o, a) 6∈ R. The probability of an attribute that
is not a appearing in a hyperedge of Ha is also q.

The hypergraphs that we consider in the following are sub-hypergraphs con-
structed from Ha by removing a and removing all the hyperedges that contained
only a. The transversal hypergraph of a hypergraph constructed in this way is
exactly Tr(Ha) \ {a}. This allows us to consider the transversal hypergraph
without adding a as a premise for a. The average number of hyperedges of this
hypergraph is m = |O| × q × (1 − p|A|−1). Indeed, there is one hyperedge for
each object o for which (o, a) 6∈ R and there exists an attribute a2 such that
(o, a2) 6∈ R (otherwise the edge would be empty and, as such, removed). We note
n the number of vertices of Ha \ {a}. At most all attributes appear in Ha \ {a},
except a, so n ≤ |A| − 1.

Proposition 3 (Reformulated from [5]). In a random hypergraph with m
edges and n vertices, with m = βnα, β > 0 and α > 0 and a probability p that a
vertex appears in an edge, there exists a positive constant c such that the average
number of minimal transversals is

O

(
n
d(α)log 1

q
m+c ln lnm

)

with q = 1− p, d(α) = 1 if α ≤ 1 and d(α) = (α+1)2

4α otherwise.

Proposition 3 bounds the average number of minimal transversals in a hy-
pergraph where the number of edges is polynomial in the number of vertices.
In [5], the authors also prove that this quantity is quasi-polynomial.

From Prop. 3 we can deduce the following property for the number of proper
premises for an attribute.

Proposition 4. In a random context with |A| attributes, |O| objects and prob-
ability p that (o, a) ∈ R , the number of proper premises for an attribute is on
average:

O

(
(|A| − 1)

(
d(α)log 1

p
(|O|×(q×(1−p|A|−1)))+c ln ln(|O|×(q×(1−p|A|−1)))

))

and is quasi-polynomial in the number of objects.

Proposition 4 states that the number of proper premises of an attribute is
on average quasi-polynomial in the number of objects in a context where the
number of objects is polynomial in the number of attributes.
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As attributes can share proper premises, |ΣProper| is on average less than

|A| ×O
(

(|A| − 1)

(
d(α)log 1

p
(|O|×q×(1−p|A|−1)))+c ln ln(|O|×q×(1−p|A|−1)))

))

Since |Σstem| ≤ |ΣProper|, Prop. 4 immediately yields the following corollary:

Corollary 1. The average number of pseudo-intents in a context where the
number of objects is polynomial in the number of attributes is less than or equal
to:

|A| ×O
(

(|A| − 1)

(
d(α)log 1

p
(|O|×q×(1−p|A|−1))+c ln ln(|O|×q×(1−p|A|−1))

))

Corollary 1 states that in a context where the number of object is polynomial
in the number of attributes, the number of pseudo-intents is on average at most
quasi-polynomial.

3.2 Almost Sure Lower Bound on the Number of Proper Premises

An almost sure lower bound is a bound that is true with probability close to 1.
In [5], the authors give an almost sure lower bound for the number of minimal
transversals.

Proposition 5 (Reformulated from [5]). In a random hypergraph with m
edges and n vertices, and a probability p that a vertex appears in an edge, the
number of minimal transversals is almost surely greater than

LMT = n
log 1

q
m+O(ln lnm)

Proposition 5 states that in a random context with probability p that a given
object has a given attribute, one can expect at least LMT proper premises for
each attribute.

Proposition 6. In a random context with |A| attributes, |O| objects and prob-
ability q that a couple (o, a) 6∈ R, the size of ΣProper is almost surely greater
than

|A| × (|A| − 1)

(
log 1

p
(|O|×q×(1−p|A|−1))+O(ln ln(|O|×q×(1−p|A|−1)))

)

As Prop 6 states a lower bound on the number of proper premises, no bound
on the number of pseudo-intents can be obtained this way.
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3.3 Multi-parametric Model

In this section we consider a multi-parametric model that fits real life data
better. In this model, each attribute j has a probability pj of appearing in the
description of a given object. All the attributes are not equiprobable.

We consider a context with m objects and n attributes. The set of attributes
is partitioned into 3 subsets:

– The set U contains the attributes that appear in a lot of objects’ descriptions
(ubiquitous attributes). For all attributes u ∈ U we have qu = 1 − pu < x

m
with x a fixed constant.

– The set R represents rare events, i.e. attributes that rarely appear. For all
attributes r ∈ R, we have that pr = 1− 1

lnn tends to 0.
– The set F = A \ (U ∪R) of other attributes.

Proposition 7 (Reformulated from theorem 3 [5]). In the multi-parametric
model, we have:

– If |F ∪ R| = O(ln |A|), then the size of the base of proper premises is on
average at most polynomial.

– If |R| = O((ln |A|)c), then the size of the base of proper premises is on
average at most quasi-polynomial.

– If |R| = Θ(|A|), then the size of the base of proper premises is on average at
most exponential on |R|.

Proposition 7 states that when most of the attributes are common (that
is, are in the set U), |ΣProper| is on average at most polynomial. When there
is a logarithmic quantity of rare attributes (attributes in R), |ΣProper| is on
average at most quasi-polynomial (in the number of objects). When most of the
attributes are rare events, |ΣProper| is on average at most exponential.

As in the single parameter model, Prop. 7 also yields the same bounds on
the number of pseudo-intents.

4 Discussion on Randomly Generated Contexts

The topic of randomly generated contexts is important in FCA, most notably
when used to compare performances of algorithms. Since [13], a few experi-
mental studies have been made. In [4], the authors investigate the Stegosaurus
phenomenon that arises when generating random contexts, where the number of
pseudo-intents is correlated with the number of concepts [3].

As an answer to the Stegosaurus phenomenon raised by experiments on ran-
dom contexts, in [9], the author discusses how to randomly and uniformly gen-
erate closure systems on 7 elements.

In [16], the authors introduce a tool to generate less biased random con-
texts, avoiding repetition while maintaining a given density, for any number of
elements. However this tool doesn’t ensure uniformity.
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The partition of attributes induced by the multi-parametric model allows
for a structure that is close to the structure of real life datasets [5]. However,
we can’t conclude theoretically on whether this model avoids the stegosaurus
phenomenon discussed in [4]. This issue would be worth further theoretical and
experimental investigation.

5 Conclusion

In this paper, we used results on average-case combinatorics on hypergraphs to
bound the average size of the base of proper premises. Those results concerns
only the proper premises, and can’t be applied on the average number of pseudo-
intents. However, as the Duquenne-Guigues base is, by definition, smaller than
the base of proper premises, the average size of the base of proper premises can
serve as an average bound for the number of pseudo-intents.

This approach does not give indications on the number of concepts. However,
there exists some works on this subject [1, 7, 15].

As the average number of concepts is known [7, 15], and this paper gives
some insight on the average size of some implicational bases, future works can
be focused on the average number of pseudo-intents. It would also be interesting
to study the average number of n-dimensional concepts or implications, with
n ≥ 3 [14,18].
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Abstract. In this paper, we consider the problem of mining numerical
association rules (ARs) from a multi-relational database (MRDB). More
specifically, we examine the effectiveness of numerical ARs with inter-
val patterns (IPs) proposed by Kaytoue et al. in FCA (Formal Concept
Analysis), and show that the MinIntChange algorithm by Kaytoue et
al. can be readily extended to mine correlated interval-based ARs with
the maximal significance in terms of the χ2 measure, by incorporating
into the algorithm a pruning technique by Morishita et al. Moreover,
since the search space for computing closed IPs becomes larger as the
number of numerical attributes increases, we utilize Super CWC , an off
the shelf feature selection algorithm to reduce the number of attributes
to use. Our approach is experimentally evaluated and compared with
the conventional methods such as a discretization-based approach or an
optimization-based approach.

1 Introduction

Numerical data arise prevalently in databases, including business and scientific
databases. Handling numerical (or quantitative) data in data mining has at-
tracted much attention since the work on mining quantitative association rules
by Srikant and Agrawal [16]. Conventionally, data discretization is commonly
used to handle numerical data; for a quantitative attribute which can have con-
tinuous values, it reduces the number of values by dividing the range of the
attribute into intervals. The other approaches to handling numerical data have
also been proposed, including a statistical distribution-based approach and an
optimization-based approach (see the survey in [14]).

Kaytoue et al. [8] proposed an FCA-based approach to handling quantitative
attributes, and introduced the notions of closed interval patterns (CIPs) as well
as generators. The notion of IPs is an instance of the general framework of pattern
structures studied by Ganter and Kuznetsov [5]. Recently, some methods have
been proposed to use CIPs for mining association rules [6,13]. In particular, the
approach in [13] handles multi-relational data mining (MRDM); it uses CIPs
for mining relational quantitative association rules of the form A → C, where
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ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
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A and C are relational patterns (i.e., logical conjunctions), and they consist of
categorical attributes and quantitative ones from a given multi-relational data.
In both work, although closed interval patterns allow us to represent intervals
concisely, the numbers of generated patterns (i.e., rules) are still large, which
makes the computation expensive and imposes a significant burden on the user’s
understanding.

In this paper, we study the problem of mining optimal relational association
rules that have the maximum χ2 value between the assumption and the conclu-
sion of the rule. To find such rules, we use the original MinIntChange algorithm
by Kaytoue et al., and incorporate into it a pruning technique by Morishita et
al. [11]. Moreover, since the search space for computing closed IPs becomes larger
as the number of numerical attributes increases, we utilize Super CWC [15], an
off the shelf feature selection algorithm to reduce the number of attributes to use.
We give some experimental results, which show the effectiveness of the proposed
method.

The organization of the rest of this paper is as follows. We first summarize
some basic notations and definitions of relational association rule mining and in-
terval patterns in Sect. 2. We then explain our approach to mining quantitative
association rules from multi-relational data in Sect. 3, and show some experi-
mental results in Sect. 4. Finally, we give a summary of this work in Sect. 5.

2 Relational Association Rules with Quantitative
Attributes

2.1 Relational Pattern Mining and Interval Patterns

We use some basic notions of MRDM in [3]. To represent data and patterns, we
use a class of first-order logical formulas. An atom is an expression of the form
p(t1, . . . .tn), where p is a predicate and each ti is a term (i.e., a constant or a
variable). A substitution θ = {X1/t1, . . . , Xn/tn} is an assignment of terms to
variables. The result of applying a substitution θ to a formula (i.e., an atom or a
conjunction in this case) F is the formula Fθ, where all occurrences of variables
Vi have been simultaneously replaced by the corresponding terms ti in θ. The
set of variables occurring in a formula F is denoted by Var(F ). A pattern is
expressed as a conjunction l1 ∧ · · · ∧ ln of atoms, denoted simply by l1, . . . , ln.

A database DB is a set of ground atoms. For a pattern C, let answerset(C; DB)
be the set of substitutions θ such that Cθ is logically entailed by a database DB ,
denoted by DB |= Cθ.

In MRDM, we often specify one of the predicates as a key (e.g., [2,1]), which
determines the entities of interest and what is to be counted. The key (target)
is thus to be present in all patterns considered. Given a database DB and a
conjunction C containing a key atom key(X), the support (or frequency) of C,
denoted by supp(C), is defined to be the number of different keys that answer
C divided by the total number of keys. C is said to be frequent , if supp(C) is no
less than some user defined threshold minsup.
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customerId(c1 ). marriedTo(c1 , c2 ). income(c1 , 200 ).
customerId(c2 ). marriedTo(c2 , c1 ). income(c2 , 120 ).
customerId(c3 ). marriedTo(c3 , c4 ). income(c3 , 50 ).
. . .
age(c1 , 30 ). bigSpender(c1 ).
age(c2 , 25 ). bigSpender(c2 ).
age(c3 , 55 ).
. . .

Fig. 1. An Example Database DB with customerId as a key: adapted from [3].

An association rule we consider in this paper is an existentially quantified
implication of the form: A → C, where A (resp., C) is a conjunction of the
form: a1, . . . , am (resp., a single atom) (m ≥ 1). We call A (C) the antecedent
(conclusion) of the rule, respectively. The support of a (relational) association
rule is defined as the support of A ∧ C, while the confidence of an association
rule is defined as the support of C divided by the support of the antecedent
A. Following [7], we call a rule strong , if it satisfies both a minimum support
threshold (minsup) and a minimum confidence (minconf ).

Example 1. Consider a toy example of a multi-relational database DB in Fig. 1,
which is adapted and simplified from [3]. Predicate customerId is assumed to be a
key. Let P be a pattern of the form: customerId(X), age(X,Q1), marriedTo(X,Y ),
income(Y,Q2), whose meaning is obvious. Then, answerset(P ; DB) contains sub-
stitutions {X/c1, Q1/30, Y/c2, Q2/120} and {X/c2, Q1/25, Y/c1, Q2/200}, for ex-
ample.

The following rule is an example of association rules:

customerId(X), age(X,Q1),marriedTo(X,Y ), income(Y,Q2)→ bigSpender(X).
(1)

In the above, Q1 and Q2 are quantitative attributes, while the others are con-
sidered to be categorical ones. 2

We call a variable corresponding to a quantitative (resp., categorical) at-
tribute a quantitative (resp., categorical) variable. We also call a variable occur-
ring in a key predicate a key variable.

Relational Association Rules with Interval Patterns We use interval
patterns to specify constraints on quantitative variables in an association rule.
In the aforementioned association rule (1), for example, we consider the following
association rule with constraints consisting of interval patterns:

customerId(X), age(X,Q1),marriedTo(X,Y ), income(Y,Q2),

〈Q1, Q2〉 ∈ 〈[l1, u1], [l2, u2]〉 → bigSpender(X). (2)
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where li (ui) is a value of the domain of the attribute Qi (i = 1, 2), respectively.
Formally, let A be a conjunction such that A contains quantitative variables

Q1, . . . , Qk (k ≥ 1). Then, we call an expression c of the form “〈Q1, . . . , Qk〉 ∈
〈I1, . . . , Ik〉” an interval constraint of A, where Ii (1 ≤ i ≤ k) is an interval
pattern for Qi.

Let θ be a substitution for Var(A) and Ii = [ei, fi] for some ei and fi. Then,
DB |= (A, c)θ iff DB |= Aθ and Qiθ ∈ [ei, fi] for i = 1, . . . , k.

For simplicity, we write simply “A, I” instead ofA, 〈Q1, . . . , Qk〉 ∈ 〈I1, . . . , Ik〉,
where I = 〈I1, . . . , Ik〉 and we call I an interval pattern of A.

For a conjunction A which has no categorical variables except a key variable,
we can define a closed pattern in the same way as [8]; let S = {θ1, · · · , θn} (n ≥ 0)
be a set of substitutions for variables in A and let Q1, . . . , Qk be quantitative
variables in A. Then, we define a mapping δ(·) as follows: for a substitution θ ∈ S
such that θ ⊇ {Q1/a1, . . . , Qk/ak}, δ(θ) = 〈[a1, a1], . . . , [ak, ak]〉. Namely, the
mapping δ maps θ into an k-dimensional interval pattern 〈[a1, a1], . . . , [ak, ak]〉.
Definition 1 (closed pattern).

For a conjunction A such that A has no categorical variables except a key
variable, let S = {θ1, . . . , θn} (n ≥ 0) be a set of substitutions for variables in
A, and I an interval pattern of A. We consider the following two operators (·)2:

I2 = {θ | θ ∈ answerset(A, I; DB)},
S2 = 〈δ(θ1) u · · · u δ(θn)〉.1.
Let I and J be an interval pattern of A. Then, I and J are equivalent if

I2 = J2 and we write it by I ≡ J . We call I closed if there does not exist any
other interval pattern J such that I ≡ J and I v J . 2

2.2 Correlation Measures

Since the framework using the support/confidence only generates too many rules,
we usually use another measure to find “interesting” ones among the generated
rules. χ2-value is such a measure to find correlated rules; it is defined as a
normalized derivation of observation from expectation. Given a contingency table
in Table 1, where given m and n are both assumed to be constants, χ2 values
are determined by x and y, and we thus denote it by χ2(x, y). The following
property of χ2-value is shown by Morishita et al. [11].

Lemma 1 (Morishita et al.). [11] Let r(I0) be a rule with an interval pat-
tern I0, and let a (b, resp.) be the number of (positive) tuples that satisfy the
antecedent of r(I0). Let r(I) be a rule with an interval pattern I, and let p (q,
resp.) be the number of (positive) tuples that satisfy the antecedent of r(I) such
that 0 ≤ p ≤ a, 0 ≤ q ≤ b, q ≤ p and (p− q) ≤ (a− b). Then, we have

χ2(p, q) ≤ max{χ2(b, b), χ2(a− b, 0)}. (3)

2

1 For I1 = 〈[ai, bi]〉i∈{1,,̇k} and I2 = 〈[ei, fi]〉i∈{1,,̇k}, u is the infimum operator de-
fined by I1 u I2 = 〈[min(ai, ei),max(bi, fi)]〉i∈{1,...,k}, and I2 v I1 ⇐⇒ [ei, fi] ⊆
[ai, bi], ∀i ∈ {1, . . . , k}.
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The right-hand side of (3) gives an upper bound of χ2(p, q), and we thus
denote it by ub(r(I)).

Table 1. Contingency Table for Rule r=A→ C.

C is true C is false Sumrow

A is true sup(r)=y x− y sup(A)=x
A is false m− y n− x− (m− y) sup(¬A)= n− x
Sumcol sup(C)=m sup(¬C)= n−m n

QuantMiner [14], a GA-based algorithm, searches rules with high fitness func-
tion rules. The fitness function Fitness(·) is an evaluation measure for a rule, and
it is based on the Gain measure proposed in [4]: Gain(A→ C) = supp(A∧C)−
min conf · supp(A). The Gain value is a measure giving a trade-off between sup-
port and confidence. Using x and y in Table 1, we write Gain(A→ B) = G(x, y),
and G(x, y) is also a convex function.

3 Mining Quantitative ARs with IPs from a MRDB

Algorithm 1 shows the outline of our algorithm for mining correlated ARs with
interval patterns from a MRDB.

Given a MRDB DB , the user first specifies a rule template of the form:
A → C; it specifies conjunctions occurring in the left-hand side and the right-
hand side, and the right-hand side contains a single target atom C. The user
also specifies values of categorical variables occurring in A and C. In case the
values of the categorical variables in the rule template are not given, its possible
values will be computed in the algorithm so that each of the categorical variable
is instantiated to some value in its domain.

Next, we compute the answersets of A and A∧C, and we make the initial as-
sociation rule rinit of the form: A, I⊥ → C, where I⊥ is the minimal interval con-
straint of A. In the aforementioned rule (2), for example, I⊥ = 〈[l1, u1], [l2, u2]〉,
where li (ui) (i = 1, 2) is the minimum (maximum) value of the domain of the
attribute Qi, respectively.

If rinitis infrequent (i.e., its support supp(A∧C) is less than minsupp), then
exit. Otherwise, we compute the set R of strong rules with the best χ2 value on

DB , by calling a function MIC+p(χ2)(rinit, 0).
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Algorithm 1: Correlated AR Mining from a MRDB

input : a MRDB DB , minsupp, minconf .
output: a set R of rules rb with the best χ2 value on DB .

1 A rule template of the form: A→ C is specified by the user; // initial

step

2 Compute answersets answerset(A; DB) and answerset(A ∧ C; DB);
// mining step for categorical attributes

3 Make an initial association rule rinit of the form: A, I⊥ → C;
4 if A ∧ C is infrequent then return;
5 Initialize R ← ∅; τ ← −∞, and compute correlated ARs by calling

MIC+p(χ2)(rinit, 0) ;
6 return R

7 Function MIC+p(χ2)(a rule r(I) : A, I → C, an integer j) : a set R of
rules with the best χ2 value on Database DB is

8 A ← {µi,α | µi,α is applicable to I for some i ≥ j, α ∈ {l, r}};
9 foreach µi,α ∈ A do

10 I ′ ← µi,α(I);
11 if sup(r(I ′)) < minsup or ub(r(I ′)) < τ then continue
12 I1 ← I ′22

;
13 if I1 fails the canonicity test then continue
14 τ1 ← χ2 value of r(I1);
15 if τ1 > τ and conf (r(I ′)) ≥ minconf then τ ← τ1; R ← {r(I1)}
16 else if τ1 = τ and conf (r(I ′)) ≥ minconf then R ← R∪ {r(I1)};
17 call MIC+p(χ2)(r(I1), i);

18 end

19 end

The function MIC+p(χ2)(r(I), j) is essentially the same as the MinIntChange
algorithm by Kaytoue et al. [8]; the enumeration of closed IPs is done in the
same way as the original MinIntChange. Namely, the algorithm generates its
direct subsumers whose supports are strictly lower than its support. New interval
patterns are generated by applying minimal changes to a given interval pattern
(line 10). Since a closed interval pattern may be generated several times, we
employ the canonicity test due to CloseByOne [10] (line 13).

Definition 2 (minimal change). [8]

Let I be an interval pattern of a conjunctionA, where I = 〈[a1, b1], . . . , [ak, bk]〉
for some k ≥ 1.

A right minimal change µi,r(I) (1 ≤ i ≤ k) is defined as I ′, where I ′ is I
with its i-th interval replaced by [ai, v] such that v = max{x ∈ Vi | x < bi} and
Vi is the set of values which the quantitative variable Qi will take in a given
database. A left minimal change µi,l(I) is defined dually.
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A right minimal change µi,r is applicable to I if the resulting interval [ai, v]
does not collapse, i.e., v − ai > 0. An applicable left minimal change µi,l(I) is
defined dually. 2

MIC+p(χ2) incorporates into the original MinIntChange a pruning mechanism
(line 11) based on Lemma 1 and a mechanism storing rules with currently best
χ2 value (line 15–16). We then have the following properties:

Theorem 1 (Correctness of Algorithm 1). Let minsup be a given minimum
support and minconf a given minimum confidence. Let DB be a given database.
Then,

[Soundness] All output rules in R of Algorithm 1 give the best χ2 value on
DB , and satisfy both minsup and minconf .

[Completeness] Let r(I) be an association rule of the form: A, I → C for some
interval I. Then, if r gives the best χ2 value on DB and satisfies minsup and
minconf , then Algorithm 1 outputs a rule r1 in R of the form: A, I1 → C
such that I1 = I22.

Proof. Since the soundness is rather obvious, we omit its proof.
For the completeness, we have from the assumption and the completeness of

MinIntChange that there exists a sequence s of minimal changes from the root
to I1 = (I)22 such that I1 passes the canonicity test, i.e., it is not pruned in
line 13. Furthermore, since the closure operator I ′22 (line 12) does not change
its support, the computation corresponding to s is not pranced in line 11, either.
Therefore, we have that r(I1) ∈ R. 2

We note that Algorithm 1 is generic in a sense that it works for another

correlation measure, m, by replacing MIC+p(χ2) by MIC+p(m), provided that
the correlation measure m has a property such as convexity so that it allows
us to compute an upper bound ub(r(I)) (line 11). Such correlation measures
include information gain, gini index and Gain, to mention a few.

Although the proposed pruning method makes the IP search space smaller,
the search space becomes larger, when a given database has many quantitative
attributes. To handle such cases, we utilize Super CWC [15], an off the shelf
feature selection algorithm to reduce the number of attributes to use. We will
show some experimental results in the following section.

4 Experimental Results

We show in Table 2 some datasets used in our experiments; one is from the
UCI Machine Learning 2 and the others are from the CTU Prague Relational
Learning Repository [12]3. We also show in Table 3 rule templates for those
datasets used to compute correlated association rules, where Qi (i = 1, 2) are
quantitative variables, while the other variables are categorical ones.

Mining Relational Correlation Rules using Interval Patterns 53



Table 2. Example Databases: † from the UCI Machine Learning Repository and the
others from the CTU Prague Repository [12]. #Relations: the number of tables in the
database. #Instances: the number of rows in the target table. Size: size in MB.

Database #Relations #Instances Size (MB) Domain

Mutagenesis 3 188 0.9 Medicine
Financial 8 682 94.1 Finance
Mondial 33 454 3.3 Geography

Heart† 1 270 0.016 Medicine

Table 3. Rule Templates for the Datasets in Table 2.

Database Rule Template

Mutagenesis mol Id(X), ind 1(A,C), eLumo(X,Q1), logP(X,Q2) → active(X)
Financial loan(X), amount(X,Q1), duration(X, 60), avg salary(X,Y,Q2) → status(X,C)
Mondial country(X), continent(X,Europe), agri(X,Q1), serv(X,Q2) → christian(X)
heart id(X), sc(X,Q1),max hra(X,Q2), cp t(X,T ) → disease(X,C)

We have implemented our proposed method by using Java 8 on a PC with
an Intel Core i7 processor running at 2.30GHz, 8GB of main memory, working
under Windows 7 (64 bit). We have performed the following experiments varying
the thresholds min sup at fixed min conf = 0.6.

Effects of the Pruning Method To see the effects of the pruning method, we
present some results for the two datasets (mutagenesis and financial) in Figure 2.
The figures (left) show the numbers of strong rules generated in computing cor-
related rules for the rule templates in Table 3, where those categorical attributes
in each rule template take some values in their domains. The figures (right) show
the corresponding execution times in milliseconds.

We have observed that the pruning method based on the branch-and-bound
heuristics enables us to generate much less rules compared with the naive ap-
proach (i.e., without pruning). The execution time of both cases are also reduced
accordingly.

Effects of the Number of Quantitative Attributes Next, to see the ef-
fects of the number of quantitative variables in mining correlated rules, we
consider two more rule templates from the rule template, R2, for the Mondial
dataset in Table 3, by varying the number of quantitative variables from 2 to
4; namely, one is a rule template R3 obtained by adding industry(X,Q3) to the
antecedent of R2, while the other rule template, R4, is obtained similarly by
adding inflation(X,Q4) to the antecedent of R3.

2 http://archive.ics.uci.edu/ml/datasets/statlog+(heart).
3 https://relational.fit.cvut.cz/.
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Fig. 2. #(Generated Strong Rules) and Execution Time for Computing Correlated
Rules for the Mutagenesis (above) and the Financial (below) Dataset. Rule templates
in Table 3 are used.

The number of generated strong rules and the execution time of computing
the association rules are shown in Fig. 3. The number of different values in the
domain of each quantitative variable Qi are shown in Table 4. The numbers of
possible interval patternss made from the values of Q1, Q2, Q3 and Q4 thus could
become very large. However, the figure shows that the numbers of generated rules
using the pruning method only moderately increase. The pruning method thus
works well also in this case.

Table 4. Some Statistics of the Mondial Dataset in Table 2. #Values: # of different
values in dom(Qi) (1 ≤ i ≤ 4).

Q1 (agri.) Q2 (service) Q3 (industry) Q4 (inflation)

#Values 27 29 30 29
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Fig. 3. #(Generated Strong Rules) and Execution Time for Computing Correlated
Rules for the Mondial Dataset. N -i (resp., P -i): the naive (resp., pruning) method for
rule Ri with i quantitative attributes (i = 2, 3, 4).

The heart dataset in Table 2 contains 13 attributes; among them, 6 attributes
take numerical values. In this case, the MinIntChange algorithm generates a large
number of CIPs. In fact, we could not obtain outputs of our algorithm within a
reasonable time when applying it directly to the complete dataset. We alleviate
this problem by first choosing some of the numerical attributes from the dataset
by using Super CWC mentioned in Sect. 3, and then applying our algorithm to
this reduced dataset. Figure 4 shows the numbers of strong rules generated and
the execution time in computing correlated rules for an initial association rule.

Table 5 shows some rules with the best χ2 values obtained by our algorithm
as well as the other approaches, i.e., QuantMiner [14], an optimization-based
approach, and CAIM [9], a data discretization approach. We notice that the rule
obtained by our algorithm has the best χ2 value in this case.

Table 5. Some Obtained Rules: An Example of the Heart Dataset. The Initial As-
sociation Rule: id(X), sc(X,Q1),max hra(X,Q2), cp t(X, 4), 〈Q1, Q2〉 ∈ 〈I1, I2〉 →
disease(X, 2). minsupp = 0.1, minconf = 0.6.

Interval Patterns 〈I1, I2〉 (supp, conf ) χ2 value

Closed IP 〈[164.0, 409.0], [71.0, 177.0]〉 (0.33, 0.75) 81.7

QuantMiner 〈[234.0, 326.0], [122.0, 147.0]〉 (0.09, 0.85) 20.2

CAIM 〈[126.0, 407.0], [71.0, 195.0]〉 (0.33, 0.70) 66.0
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Fig. 4. #(Generated Strong Rules) and Execution Time for Computing Corre-
lated Rules for the Heart Dataset with Initial Association Rule: id(X), sc(X,Q1),
max hra(X,Q2), cp t(X, 4), 〈Q1, Q2〉 ∈ 〈I1, I2〉 → disease(X, 2). minsupp = 0.1,
minconf = 0.6.

5 Concluding Remarks

In this paper, we have considered the problem of mining relational association
rules, especially focusing on the use of closed interval patterns (CIPs) for find-
ing correlated rules with the best χ2 values. Since the number of mined CIPs
increases as the number of attributes and values in the domain of each attribute
increases, we have examined the effectiveness of the original MinIntChange al-
gorithm [8] with the pruning technique by Morishita et al. on the problem. We
have also examined the effectiveness of the use of a feature selection algorithm,
Super CWC , to reduce the search space of IPs.

Most of the work in the field of MRDM have handled numerical data by using
data discretization. To the best of our knowledge, there has been no approach
which uses closed interval patterns for mining correlated association rules in
multi-relational data.

For future work, we will examine another correlation measurem in MIC+p(m),
since our algorithm is generic and will work for another measure. Since the search
space for CIPs is still large in general and the computation of CIPs is costly,
we will need some method for reducing the computational time and space to a
manageable size.
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k-Partite Graphs as Contexts
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Abstract In formal concept analysis, 2-dimensional formal contexts are
bipartite graphs. In this work, we generalise the notions of context and
concept to graphs that are not bipartite. We then study the complexity
of the enumeration and identify the structure of the set of such concepts.

1 Introduction

Formal concept analysis (FCA) is a mathematical framework centered on the
notions of formal context (data) and formal concept (significant patterns). Most
of the simpler real-life data sets take the form of formal contexts and the in-
teresting patterns are often variations on the theme of formal concepts, making
FCA well-suited for applications in any field that deals with data [3,10,6,12].
However, it has its limitations. With the increasing complexity of data, FCA
requires extensions and generalisations such as fuzzy or multi-dimensional ap-
proaches [2,1,7,13].

Formal contexts in their basic form are binary tables – i.e. bipartite graphs
for which a bipartition into independent sets is given. One of the most important
generalizations of FCA, Polyadic Concept Analysis (PCA) [13], deals with the
same notions of context and concept when said context is an n-uniform1 n-
partite2 hypergraph – modeling the majority of multidimensional data sets. In
PCA, again, an n-partition of the hypergraph is given. This trend can be found
in all variants of FCA : the number of dimensions is the size of the data tuples.

We believe that it would be interesting, ultimately, to generalise FCA to n-
partite hypergraphs that are not n-uniform in order to create new opportunities
of applications involving exotic data. In this work, as a first step toward this
goal, we focus on the case of n-partitioned graphs (2-uniform hypergraphs) with
n > 2. We define the corresponding “concepts”, briefly study the complexity of
their enumeration and show that they form a complete n-lattice, implying that
known algorithms can be used to compute them.

1 i.e. hypergraph such that all its hyperedges have size n
2 i.e. the set of graph vertices is decomposed into n disjoint sets such that no two

graph vertices within the same set are adjacent

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 59–67,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
Olomouc, 2018.



2 Basics

This section briefly presents the basic notions in formal concept analysis and
polyadic concept analysis. For a deeper look into the 2-dimensional case, we
refer the reader to [5].

2.1 Binary Formal Concept Analysis

Definition 1 A (formal) context is a triple (S1, S2, R) in which S1 and S2 are
sets of what is commonly referred to as objects and attributes and R is a binary
relation between objects and attributes representing the fact that an object is
described by an attribute.

A formal context is usually represented by a crosstable.

R a b c d e

1 × ×
2 × × ×
3 × × ×
4 × ×
5 × ×

Figure 1. A formal context ({1, 2, 3, 4, 5}, {a, b, c, d, e}, R)

Definition 2 Let C = (S1, S2, R) be a context. A (formal) concept of C is a pair
(E ⊆ S1, I ⊆ S2) such that E × I ⊆ R and both E and I are maximal for this
property.

In other words, a concept is a maximal rectangle full of crosses up to per-
mutation of objects or attributes, also called in graph theory: a full bipartite
subgraph or a biclique.

In our Fig. 1 example, (1, ab) and (23, bd) are concepts.

The set of concepts can be ordered by the inclusion relation on both objects
and attributes and then forms a complete lattice (i.e. graph of concepts). Every
complete lattice is isomorphic to the concept lattice of some context [5].
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2.2 Multidimensional Formal Concept Analysis

The notions of formal contexts and concepts have been extensively studied and
are successfully used in various fields such as data mining, data analysis, infor-
mation retrieval, source code error correction, machine learning and for build-
ing taxonomies and ontologies [9]. The multidimensional generalization of FCA,
polyadic concept analysis [13], has received comparatively less attention but is a
promising theoretical as well as applicative field. Let us present here the basics.

Definition 3 An n-context is a tuple (S1, . . . , Sn, R) in which Si, i ∈ {1, . . . , n},
is a set called a dimension and R ⊆∏i∈{1,...,n} Si is an n-ary relation.

An n-context can be represented by an n-dimensional crosstable.

a b c a b c a b c

1 × × × ×
2 × × × ×
3 × × × ×

α β γ

Figure 2. A 3-context ({1, 2, 3}, {a, b, c}, {α, β, γ}, R)

Definition 4 Let C = (S1, . . . , Sn, R) be an n-context. An n-concept of C is
an n-tuple (T1, . . . , Tn) such that Ti ⊆ Si,

∏
i∈{1,...,n} Ti ⊆ R and there is no

d ∈ {1, . . . , n} and k ∈ Sd \ Td such that (T1, . . . , Td ∪ {k}, . . . , Tn) respects this
property.

In other words, an n-concept is a maximal n-dimensional box full of crosses
in C up to permutations inside dimensions.

In our Fig. 2 example, ({1, 2, 3}, {a}, {α, β}) and ({2}, {a, b}, {γ}) are 3-
concepts.

The set of all the n-concepts in an n-context, together with the n quasi-
orders induced by the inclusion relation on the subsets of each dimension, forms
an n-lattice and each complete n-lattice is isomorphic to the concept lattice of
an n-context, as stated in the basic theorem of polyadic concept analysis [13].
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Figure 3. Graph that will be used as running example.

2.3 Graphs

A graph is a pair G = (V,E) in which V is a set of elements called vertices and
E ⊆ V 2 a set of edges.

A set X ⊆ V of vertices is a clique if there is an edge between any two
of its elements. A clique is maximal if it is not contained in another clique.
An independent set is a set of vertices that does not contain any edge. An
independent set is maximal if it is not contained in any independent set. A
vertex cover is a set of vertices that contains at least one vertex from every edge.
A vertex cover is minimal if it does not contain any vertex cover. A (maximal)
independent set in a graphG is a (maximal) clique in the complementary graphG
and reciprocally. The complement of a (maximal) independent set is a (minimal)
vertex cover and reciprocally.

We will use M(G) to denote the set of maximal cliques in a graph G.

A graph G = (V,E) is k-partite iff V can be partitioned into k independent
sets.

a

b

c

1

2

3

α

β

γ

SgreekSlatin

Snumbers

Figure 4. Partition of our example graph into three independent sets Snumbers, Slatin

and Sgreek.
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A complete k-partite graph is a k-partite graph such that there is an edge
between every pair of vertices that do not belong to the same independent set.

In our running example, the subgraphs induced by the vertices sets {1, b, α}
and {1, a, b} are, respectively, complete tripartite and bipartite graphs.

Bidimensional formal contexts (S1, S2, R) are bipartite graphs (S1∪S2, R) for
which a bipartition is given. In graph terminology, 2-concepts are thus maximal
complete bipartite subgraphs of the context.

3 k-Partite Graphs as Contexts

FCA offers tools to find and manipulate patterns in bipartite graphs. What
happens to these patterns and tools when the input graph is not bipartite ?

3.1 Defining the Concepts

Let us start by defining the objects we are looking for. The central patterns
in FCA are concepts : maximal complete bipartite subgraphs of the context.
When the context is k-partite, a natural generalisation can then be expressed as
follows.

Definition 5 Let G = (V,E) be a graph and S = (S1, . . . , Sk) a partition of V
into k independent sets. Let {j1, . . . , jm} ⊆ {1, . . . , k}. An m-2concept of (S,E)
is a tuple C = (Cj1 , . . . , Cjm), Cjx 6= ∅, Cjx ⊆ Sjx , such that

⋃
x∈{1,...,m} Cjx in-

duces a maximal completem-partite subgraph of G and there is no (Cj1 , . . . , Cjm , Cjm+1
)

with this property.

In “m-2concept”, the m means that we consider an m-partite graph as “con-
cept” (m dimensions are involved in the pattern) and the 2 means the pattern is
found in a 2-uniform graph. We have chosen to define them as m-tuples instead
of k-tuples with m ≤ k in order to avoid having to consider the m − k empty
components and confusion with k-concepts from PCA.

We will now suppose, for the remainder of this paper, that our running
example is partitioned as in Fig. 4. In this case, (1, b, α) is a 3-2concept and
(1, ab) and (23, βγ) are 2-2concepts. The tuple (3, c, βγ) is not a 3-2concept
because the induced subgraph is complete bipartite, not complete tripartite3.
The tuple (1, α) is not a 2-2concept because (1, b, α) is a 3-2concept.

When the graph is bipartite and the partition provided is binary, the
2-2concepts are the formal concepts with non-empty intents and extents. It is
important to note that Si, i ∈ {1, . . . , k}, is a complete 1-partite subgraph –
though (Si) is not necessarily a 1-2concept.

We will use T ((S,E)) to denote the set of m-2concepts, 1 < m ≤ |S|, of a
k-partite graph (V,E) together with a partition S of V into k independent sets.

3 Two sets are considered {3} and {c,βγ} without relations between {c} and {βγ}
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Proposition 1 Let (V,E) be a graph and S = (S1, . . . , Sk) a partition of V into
k independent sets.

T ((S,E)) =M((V,E ∪X))

with X =
⋃
i∈{1,...,k}

(
Si

2

)

Proof. In G = (V,E
⋃
i∈{1,...,k}

(
Si

2

)
), we have that ∀i ∈ {1, . . . , k}, Si is a clique.

Let C = (Cj1 , . . . , Cjm) with Cji ⊆ Sji be such that
⋃
i∈{1,...,m} Cji is a maximal

clique in G. By definition, any two vertices x ∈ Cja and y ∈ Cjb , a 6= b are
neighbours in G. As such, they are neighbours in (V,E) too. Clearly, that makes
C an m-partite complete subgraph of (V,E). The maximality property holds
from one graph to the other so C is an m-2concept of (V,E).

Let C = (Cj1 , . . . , Cjm) be an m-2concept of (V,E). By definition, any two
vertices x ∈ Cja and y ∈ Cjb , a 6= b are neighbours in (V,E). As such, they are
neighbours in G. As, ∀i ∈ {1, . . . , k}, Si is a clique,

⋃
i∈{1,...,m} Cji is a clique

in G. The maximality property once again holds from one graph to the other so⋃
i∈{1,...,m} Cji is a maximal clique in G. ut

a

b

c

1

2

3

α

β

γ

Figure 5. Our example graph with its partitions made into cliques.

This proposition states that m-2concepts are maximal cliques in a graph
that can be constructed in polynomial time from the context. This implies that
T ((S,E)) can be computed from (S,E) in output-polynomial time [11].

3.2 Structuring the Concepts

We now have to characterise the structure of the set T ((S,E)). We will show
that it forms a k-lattice when put together with the appropriate quasi-orders.
The best way to do this is to show that T ((S,E)) is isomorphic to the concept
k-lattice of a k-context.

Let K((S,E)) = (S1∪{s1}, . . . , Sk∪{sk}, R) be a k-context such that si 6∈ Si
and

(x1, . . . , xk) ∈ R⇐⇒ ∀xi 6= si, xj 6= sj ,∃e ∈ E such that xi, xj ∈ e
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Note that, potentially, xi = xj . In the context K((S,E)) each cross corresponds
to a clique of the graph (V,E), including 1-element ones, with the elements
si representing the fact that a clique does not intersect the set Si. Figure 6
illustrates the 3-context corresponding to our running example..

Clearly, if (X1, . . . , Xk) is a k-concept of K((S,E)), then ∀i ∈ {1, . . . ,m},
si ∈ Xi.

a b c s2 a b c s2 a b c s2 a b c s2
1 × × × × ×
2 × × × ×
3 × × × ×
s1 × × × × × × × ×

α β γ s3

Figure 6. The 3-context ({1, 2, 3, s1}, {a, b, c, s2}, {α, β, γ, s3}, R) corresponding to our
running example.

Theorem 1. Let (V,E) be a graph and S a k-partition of (V,E) into k inde-
pendent sets. The set of m-2concepts of (S,E), together with the k quasi-orders
induced by the inclusion relation on each independent set, forms a k-lattice.

Proof. Let (X1, . . . , Xk) be a k-concept of K((S,E)) = (S1 ∪ {s1}, . . . , Sk ∪
{sk}, R). By definition,

∏
i∈{1,...,k}(Xi \ {si}) ⊆ R. From the construction of

K((S,E)), we get that ∀xi ∈ Xi\{si}, xj ∈ Xj\{sj}, ∃e ∈ E such that xi, xj ∈ e.
This means that the tuple (Xj1 \ {sj1}, . . . , Xjm \ {sjm}), such that the different
Xji \ {sji} are the non-empty components of (X1 \ {s1}, . . . , Xk \ {sk}), is an
m-2concept of (S,E).

Let (Cj1 , . . . , Cjm) be anm-2concept of (S,E). By definition, ∀A ∈∏i∈{1,...,m} Cji ,
∀x, y ∈ A, ∃e ∈ E such that x, y ∈ e. As such, the tuple (X1, . . . , Xk) such that

Xi =

{
Ci ∪ {si} if i ∈ {j1, . . . , jm}
{si} otherwise

is a k-concept of K((S,E)). ut
This implies that algorithms [4,8] for computing n-concepts can be used to

compute m-2concepts.

In Fig. 6, the 3-concepts are

(1s1, bs2, αs3) (23s1, s2, βγs3)
(1s1, abs2, s3) (12s1, bs2, s3)
(3s1, cs2, s3) (123s1, s2, s3)
(s1, abcs2, s3) (s1, s2, αβγs3)
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which yield the m-2concepts of our running example once the si and empty
sets are removed.

4 Conclusion

In this paper, we have extended the notions of formal context and concept to
graphs that are not bipartitioned in order to allow the handling of a different kind
of data. We have shown that, given a k-partition of the graph into independent
sets, the set of such m-2concepts forms a k-lattice. This allows the use of any
k-lattice algorithm to compute m-2concepts.

The next step would be to generalise the notion of n-concept to hypergraphs
that are not n-partite n-uniform. This, however, is not as straightforward as
m-2concepts. Indeed, the k-lattice structure of m-2concepts comes from the fact
that a clique with n vertices can freely be converted into 2n hyperedges (the
subsets of vertices). Converting an edge (a, b) into two singletons (a) and (b) does
not add complexity. However, converting an hyperedge (a, b, c) into a triangle
(a, b), (b, c), (a, c) can potentially create new triangles that do not correspond
to existing hyperedges of size 3.
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Abstract. Relational Concept Analysis (RCA) has been introduced in
order to allow concept analysis on multi-relational data. It significantly
widens the field of application of Formal Concept Analysis (FCA), and
it produces richer concept intents that are similar to concept definitions
in Description Logics (DL). However, reading and interpreting RCA con-
cept lattices is notoriously difficult. Nica et al have proposed to represent
RCA intents by cpo-patterns in the special case of sequence structures.
We propose an equivalent representation of a family of RCA concept lat-
tices in the form of a hierarchy of concept graphs. Each concept belongs
to one concept graph, and each concept graph exhibits the relationships
between several concepts. A concept graph is generally transversal to
several lattices, and therefore highlights the relationships between dif-
ferent types of objects. We show the benefits of our approach on several
use cases from the RCA litterature.

Keywords: Formal Concept Analysis, Relational Concept Analysis, Data Min-
ing, Concept Graph

1 Introduction

Many domains produce multi-relational data. For example, in the health domain,
one can have patients taking drugs, drugs giving some symptoms and interact-
ing with other drugs, doctors taking care of patients and prescribing drugs to
patients, etc. In order to extract knowledge from that kind of data, many data
mining techniques, such as Formal Concept Analysis (FCA) [8], require the flat-
tening of multi-relational data but this results in loss of structural information,
and a more difficult interpretation of discovered patterns. It is therefore desirable
to have direct methods for multi-relational mining [2]. Several generalizations
of FCA have been proposed to handle relational data: Power Context Fami-
lies [10], Relational and Logical Concept Analysis [7], Relational Concept Anal-
ysis (RCA) [11], and Graph-FCA [5]. RCA has so far been the most frequently
used approach with applications in health [11,9] or model driven engineering [4].
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An important issue for the effective use of RCA is the interpretation of its
outputs. Indeed, RCA produces not one but several concept lattices, and the
intent of each concept may depend on the intent of other relationally-related
concepts, recursively. To the best of our knowledge, there has been only one pro-
posal to automatically extract and graphically represent the relational patterns
that are buried into concept intents: Nica’s cpo-patterns [9]. However, it has sev-
eral restrictions. First, it is defined only for sequential data. Second, it generates
cpo-patterns only for the concepts of one chosen lattice. Third, it generates a
cpo-pattern for each concept of the chosen lattice, missing potential factoriza-
tions between patterns and thus interesting information between patterns.

In this paper, we propose a novel and generic graphical representation of RCA
outputs that emphasizes the relational patterns. We call it hierarchy of concept
graphs. It has the following good properties. First, it makes no assumption on
the context family, and can therefore handle all kinds of graph structures, not
only sequences. Second, it is at the same time a complete and non-redundant
representation of the family of concept lattices, and does not require to choose
one concept lattice as starting point. Third, it offers a better balance in the
display between generalization ordering (lattice edges), and relationships (rela-
tional attributes). Fourth, it clusters concepts into concept graphs, and hence
produce a coarser-grained representation. Fifth, it can be efficiently computed
from the concept lattices, in linear time.

Section 2 discusses related work. Section 3 shortly recalls the main definitions
of RCA. Section 4 introduces our representation of RCA outputs as a hierarchy
of concept graphs, illustrates it on a reference example of RCA, and discusses its
properties. Section 5 evaluates our approach on a few use cases, and discusses the
impact of representation choices. Section 6 concludes and draws perspectives.

2 Related Work

Several generalizations of FCA have been proposed to handle relational data.
Power Context Families [10] has a formal context for each relation arity, i.e.
a context of objects, a context of couples of objects, a context of triples of
objects, etc. A concept lattice is computed for each context, independently of
other contexts. The resulting concepts are used as a vocabulary of types and
relations to build concept graphs that are similar to Conceptual Graphs [12,1].
Relational and Logical Concept Analysis [7] takes as input a power context
family limited to unary and binary relations but extended to complex logical
descriptions. It generates a single concept lattice where concept intents combine
both unary and binary descriptors, and where the labeling of the concept lattice
is extended with relationships between concepts. Relational Concept Analysis
(RCA) [11] takes as input a power context family limited to unary and binary
relations. In practice, the unary context is split in several unary contexts, one
for each type of object. RCA generates a concept lattice for each type of object,
where concept intents are sets of classical attributes and relational attributes.
The latter represent relationships to other concepts in the concept lattice family.
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Graph-FCA [5] takes as input a power context family without restriction on
arities. It generates a set of graph patterns where each node represents a unary
concept, each pair of nodes represents a binary concept, etc. For each concept
arity, the set of all concepts forms a concept lattice.

The above shows that there are two kinds of representations of the results:
concept lattices and concept graphs. They complement each other: concept lat-
tices emphasizes the generalization ordering between concepts, while concept
graphs emphasize the relationship patterns between objects in data. In RCA,
the native representation is made of concept lattices, and the relationship pat-
terns are only indirectly accessible through relational attributes. Recently, Nica
et al [9] have proposed a solution to combine concept lattices with graph pat-
terns. However it is not a general solution for RCA because of the limitations
already discussed in the introduction.

3 Relational Concept Analysis (RCA)

We here recall the definitions of context family and lattice family in RCA. We
therefore focus on the input and output of RCA, and we ignore the methodology
and algorithms that are used to compute the concept lattices from the context
family. Indeed we are here concerned with the graphical representation of RCA
lattices rather than on their computation. A detailed presentation of RCA is
available in previous papers, in particular [11]. The input data of RCA is called
a relational context family (RCF). In words, it is a collection of formal contexts,
one for each kind of objects, together with a collection of binary relations going
from the objects of one context to the objects of the same or another context.

Definition 1. A Relational Context Family (RCF) is a pair (KKK,RRR) where:

– KKK = {Ki}i=1..n is a set of contexts Ki = (Oi, Ai, Ii), and
– RRR = {rk}k=1..m is a set of relations rk where rk ⊆ dom(rk) × ran(rk), and
dom(rk), ran(rk) ∈ {Oi}i=1..n are respectively the domain and range of rk.

As a running example, we reuse the RCF defined in [11] about pharma-
covigilance of AIDS patients and drugs: ({Kp,Kd}, {takes, itb, iw}). Context Kp
describes 4 patients in terms of age, gender, and observed Adverse Drug Reac-
tions (ADR) (14 attributes). Context Kd describes 6 drugs in terms of active
molecule, and expected ADR (16 attributes). Relation takes relates patients to
the drugs they have taken. Relation itb (“is taken by”) is the inverse of takes.
Relation iw (“interacts with”) relates couples of drugs that interact with each
other (it is symmetric).

Given an RCF, the output of RCA is a collection of concept lattices, one
for each context of the RCF. The relations of the RCF are taken into account
by repeatedly applying a mechanism of relational scaling on each context and
its concept lattice, until convergence is reached. This leads to the introduction
of relational attributes that express relational constraints, and contribute to the
formation of concepts (see [11] for more details).
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Fig. 1. The relational concept lattice of patients Lp (reduced labelling)

Definition 2. Let (KKK,RRR) be a RCF. The Relational Concept Lattice Family
(RCLF) is a set of concept lattices LLL = {Li}i=1..n, one for each context Ki.
Each concept ci in Li is a pair (X,Y ) where:

– X ⊆ Oi is the extent of the concept, and
– Y is the intent of the concept, and contains attributes in Ai and relational

attributes in the form ρ r : cj where ρ ∈ {∃,∀∃, ...} is a scaling operator,
r ∈ RRR, dom(r) = Oi, ran(r) = Oj, and cj ∈ Lj.

In this paper, we only consider existential scaling (ρ = ∃) even though our
approach is applicable to other scaling operators. Figure 1 shows the concept
lattice Lp of patients, and Figure 2 the concept lattice Ld of drugs. Both are
represented with reduced labelling, i.e. each object/attribute appears only once.
Object labels are placed below the concept, while attribute labels are placed
above and on the right of the concept. Each relational attribute ∃r : cj is dis-
played as r : cj .

The reading and interpretation of RCA lattices is notoriously difficult. The
main reason is probably that reading the intent of a concept requires not only to
traverse the lattice upward, as in FCA, but also to follow relationships to other
concepts through the relational attributes. For example, concept p7 groups the
adult patients who have fatigue, and take a drug in concept d10 and a drug in
concept d14. Concept d10 groups the drugs for which diarrhea is expected, and
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Fig. 2. The relational concept lattice of drugs Ld (reduced labelling)

which are taken by patients in concept p7. Loops in the exploration of the intent,
like in that example, lead to circular definitions of concepts, and contribute to
the difficulty of interpretation.

4 Hierarchies of Concept Graphs

Our objective is to facilitate the reading of the intent of RCA concepts, in order
to facilitate their interpretation. The first idea is to display the different lattices
side-by-side, and to materialize each relational attribute r : c2 on a concept c1 as
a relational edge, i.e. a labeled and directed edge c1

r−→ c2. However, the graph-
ical representation becomes denser and even less readable; and its structure is
dominated by the lattice structures at the cost of elongated relational edges. A
better balance between lattice edges and relational edges is desirable. The second
idea is to identify relational structures as subsets of interrelated concepts from
different lattices, and to use them as building blocks in the graphical representa-
tion. We propose to define those relational structures as the Strongly Connected
Components (SCC) [3] of the dependency graph between concepts. The intuition
behind that dependency graph is that the intent of a concept depends on its
ancestors in the lattice, and also on the target concepts of relational attributes.

Dependency Graph. We first define the notion of concept dependency and then
the dependency graph of a RCLF.
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Definition 3. Let LLL be a RCLF and c1, c2 be two concepts in LLL. Concept c1
depends on concept c2, denoted by c1 → c2, if:

– c2 is a parent concept of c1 (c1 ≤ c2),
– or c1 is labeled by a relational attribute ρ r : c2.

Definition 4. Let LLL be a RCLF. The dependency graph of LLL is the directed
graph GLLL = (V,E) where:

– V is the set of all concepts of all lattices in LLL except bottom concepts,
– and E = {(c1, c2) | c1, c2 ∈ V and c1 → c2}.

SCCs as Concept Graphs. From there, a SCC of GLLL is a maximal set of concepts
(possibly from several lattices) where each concept has a dependency path to all
other concepts in the SCC for the definition of its intent. SCCs are used to define
concept graphs, which are the building blocks of our graphical representation.

Definition 5. A concept graph is the subgraph of the lattice family (enriched
with relational edges) that is induced by a SCC of GLLL. It therefore mixes concepts
from several lattices, and both lattice edges and relational edges.

In Figure 3, each rounded box contains a concept graph (G1-G6). Nodes
are concepts from the two RCA lattices in Figures 1 and 2 (same id, same
labels). Relational edges (arrows) replace the relational attributes to graphically
represent the relational dependencies. Lattice edges that cross concept graph
boundaries are displayed as dotted lines to keep the graph light, and to emphasize
the concept graphs over the global lattice structures. It is notable in this example
that no relational edge crosses concept graph boundaries. This is because in the
context family each relation either has an inverse relation (e.g., takes and itb)
or is a symmetric relation (e.g., iw).

Furthermore, it is known that the SCCs of a graph form a directed acyclic
graph, where SCC1 → SCC2 if any concept in SCC1 depends on any concept
in SCC2. The concept graphs of a RCLF can therefore be organized into a hi-
erarchy of concept graphs. For example, concept graph G2 is a child of concept
graph G1 in Figure 3 because several concepts in G2 have lattice edges (dotted
lines) to concepts in G1: e.g., from p4 to p6, or from d12 to d14. Those hierarchi-
cal relationships can be seen as a complex version of the lattice edges, combining
several lattice edges across different lattices.

Interpretation. We here give a short interpretation of the hierarchy of concept
graphs in Figure 3. G1 represents the most general pattern between patients and
drugs. It shows that all patients take drugs expected to give fatigue and diarrhea,
and that all drugs are taken by an adult with fatigue. G2-4 are specializations
of G1. For example, G4 specializes G1 to patients with bleeding. G2 specializes
G1 to patients with hairloss and oedema, which all take drugs giving vomiting
and rash, which are taken by a patient with hives, and by a female patient.
G5 and G6 represent patterns that are specific to individual patients and drugs,
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Fig. 3. Hierarchy of concept graphs: arrows represent relational attributes (takes from
patients to drugs, itb from drugs to patients, iw between drugs), dotted lines represent
lattice edges across concept graphs
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and are therefore less interesting from a data-mining perspective. G5 shows that
some patients (p13) take drugs (d6 and d3) that cause liver dammage (d5) and
are in interaction with drug Sustiva (d13) which is taken by patient Lane (p3).

Discussion. The hierarchy of concept graphs has a number of good theoretical
properties. First, it is a complete representation because it keeps all concepts
and edges from the concept lattices. It is also parcimonious in that it does not
duplicate any concept, edge, or label. Second, it is more readable because it
displays relation attributes as relation edges, and because its layout offers a
better balance between lattice edges and relational edges. Moreover, when the
many concepts are clustered in a small number of concept graphs, the RCLF can
be read at a higher level of granularity. Third, it is efficient to compute because
the SCCs can be extracted in time linear with the size of GLLL, and hence in the
cumulated size of lattices in LLL.

5 Use Cases

In this section we present two use cases in order to compare graph concepts with
results of Graph-FCA and cpo-patterns from [9]. The first one describes the royal
family. The second use case is about flu patients and medical examinations.

5.1 Royal Family: Genealogical Data

child

femalemale

pare
nt

G1

G2 G3

G4

G5

p0

p1 p3

p10

p8 p9

p6

p4

Fig. 4. Hierarchy of concept graphs about the royal family (G5 not detailed)

The first use case is the one used for Graph-FCA [6]. It describes a
subset of the British royal family: Charles, Diana, William, Harry, Kate,
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George, and Charlotte. The power context family uses two attributes (male
and female), and two relations (parent and its inverse child). Note that the
relations have the same object type as domain and range: people. RCA
produces one lattice containing 19 concepts. Figure 4 shows the hierarchy of
concept graphs obtained from that lattice with our approach. Concepts are
clustered in 5 concept graphs. G5 is not detailed because it contains very
specific concepts, and hence does not bring new knowledge. The hierarchy of
concept graphs enables to reach the following interpretations for each concept:
p0 people p8 male parents (fathers)
p1 male people (men) p9 female parents (mothers)
p3 female people (women) p6 people with a father and mother (children)
p10 people with a child (parents) p4 male children (sons)

The concept of “daughters” has a single instance (Charlotte), and is found in
G5, a specialization of G4. The relation from p10 (parents) to p4 (sons) shows
that, in the context, every parent has a son but not necessarily a daughter.
The relations froms p6 to p8 and p9 shows that, in the context, every child
who has a known father also has a known mother, and reciprocally. Concept
graph G4 exhibits the relational pattern of a nuclear family, relating children to
their father and mother as parents, with the specificity in this context that all
parents have a son.

Comparing those results to Graph-FCA, it is interesting to note that the
graph patterns of Graph-FCA are equivalent to the RCA concept graphs, up to a
few representation changes. Graph-FCA patterns only represent relational edges,
not lattice edges. The generalization ordering between concepts and patterns is
therefore not explicitly represented. In Graph-FCA the use of inverse relations
is implicit so that the child relation is redundant with the parent relation. Note
that Graph-FCA also defines n-ary concepts such as “couple” or “sibling”. The
equivalence with Graph-FCA on this example must not be generalized. In fact,
it does not hold on the running example about patients and drugs.

5.2 Medical Histories and Comparison to cpo-Patterns

The second use case is the one used for cpo-Patterns [9]. It describes flu pa-
tients through their symptoms, their viral tests and their medical examinations.
The specificity of that dataset is the sequentiality of the data. For instance for
patient p1 we know that a viral test on 28/09 is preceded by a medical ex-
amination on 26/09 which is also preceded by another medical examination on
25/09. The power context family uses 6 symptom attributes (COUGHmoderate,
FEVERmoderate, ?moderate, COUGHhigh, FEVERhigh, ?high) and two rela-
tions: RME-ipb-ME (sequential relation between medical examinations), RVT-
ipb-ME (sequential relation from viral tests to medical examinations). It de-
scribes five viral tests and ten medical examinations. RCA produces two lattices.
The viral test lattice contains 12 concepts and the medical examination lattice
contains 18 concepts.

Figure 5 shows the hierarchy of concept graphs obtained from those lattices
with our approach. We note that it is a special case, indeed each concept is a
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Fig. 5. Hierarchy of concept graphs about medical histories. Each concept is a concept
graph on its own. Greyed concepts are about viral tests, others are about medical
examinations. Only concepts with support greater than one are shown.

concept graph by its own. It is due to the fact that the relation ”is-preceded-
by” has no inverse relation, and forms no cycle because of its sequential nature.
It is thus impossible to find more than one concept in a strongly connected
component. The greyed concepts are the concepts from the viral test lattice,
other concepts come from the medical examination lattice. In the graph only
concepts with support greater than one are shown. We can read in the hierarchy
that all viral tests (top concept 0) are preceded by a medical examination (top
concept 1). That relational pattern has two specialisations. The first one where
the symptom during the examination is moderate cough (concepts 2 and 8). The
second one where there is a high symptom (concepts 7 and 14). We can also note
that parts of sequential patterns are shared by several concepts. For instance,
concept 24 and 10 are preceded by a medical examination with high cough
(concept 4). In fact, concept 9 specializes concept 10 by inserting between the
viral test and the high cough (concept 4) two additional medical examinations
(concepts 21 and 23), which are themselves specialisations of concept 24. It
highlights the overlaps between sequential patterns.

We have also conducted experiments when considering the inverse relation
of ”is-preceded-by” (ipb), i.e. ”is-followed-by” (ifb). The power context family
is thus extended with two relations: RME-ifb-ME and RME-ifb-VT. RCA still
produces two lattices but the hierarchy of concept graphs is different. Indeed,
eleven concept graphs are extracted. Each of them contains several concepts and
only one viral test concept. Figure 6 shows an excerpt of the hierarchy of concept
graphs with those inverse relations. For the sake of readability and compactness,
we modified the representation of concept graphs in two ways: (a) only the most
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Fig. 6. Hierarchy of concept graphs about medical histories with inverse relation ifb.
Only concept graphs whose concepts have their support greater than one are shown.

specific concepts of a concept graph are kept, and (b) the full intent of those
concepts is shown, instead of the reduced intent, so that each concept graph
can be read in isolation. Eight concept graphs among the eleven are shown and
only two of them (G4 and G5) are detailled in the figure. Concept graph G4
can be read as ”a viral test (concept 13) preceded by a medical examination
with moderate cough (concept 15) and a medical examination with high fever
(concept 16) and both of them are preceded by a medical examination with a
high symptom (concept 31)”.

The interesting result is that the eleven concept graphs match exactly the
eleven cpo-patterns extracted by [9]. However, there are some differences in the
display of the patterns. Indeed, in order to compute the strongly connected
components, the inverse relations have to be added and they appear in the
result. For instance between concepts 13 and 15 there are two arrows, one in each
direction, because the relation is-followed-by (ifb) is the inverse relation of is-
preceded-by (ipb). In the same vein, ifb and ipb are transitive relations, and thus
some arrows are redundant. For example, the arrows between concepts 13 and
31 can be deduced from the paths through concepts 15, and 16 by transitivity.
In [9], the representation was specialized for sequential data, and so that kind
of redanduncies were avoided. On the contrary, our approach is general and
allows to take into account any kind of relations without any assumption on
them. In order to avoid those redundancies the description language of power
context families should be modified in order to add a way to specify relation
properties (e.g., is transitive, is symmetric, has an inverse), and then it should
be taken into account when computing and displaying the concept graphs. The
same can be said for the redundancy on attributes. Indeed, when looking at
the intent of concept 15, we can note the redundancy between ”?moderate” and
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”COUGHmoderate”. It is due to the conceptual scaling used on the symptom
attributes. By taking into account the hierarchy between attributes, the display
of the concept graphs can be simplified without loosing information.

6 Conclusion and Perspectives

We have proposed a novel and general representation of RCA concept lattices,
called hierarchy of concept graphs, in order to facilitate their interpretation. The
key idea is to exhibit relational patterns by having a better balance in the display
between lattice edges and relational edges. Each concept graph clusters a set of
concepts (from different lattices) whose intents are mutually dependent, and
exhibits a relational pattern. Concept graphs are organized into a hierarchy so
that generalization ordering between concepts is lifted to concept graphs. As
future work, we plan to study the impact of relation properties (e.g., inverse,
transitivity) on the trade-off between the number of concept graphs and the size
of each concept graph. It will also be necessary to develop tools for the dynamic
visualization of large hierarchies of concept graphs, à la Conexp1.
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Abstract. In this article, we analyze different dimensional concepts of
complete (ortho)lattices and their tensor products. The determination of
these dimensions can be translated to certain set cover problems and the
cardinal product of the complementary underlying formal contexts. To
treat this cover problems in a unified manner, we take a more universal
approach via the general set cover problem and its product. This yields a
sufficient condition for the multiplicativity of various lattice dimensions
with respect to the tensor product of complete lattices.

Keywords: formal concept analysis, tolerance relation, cardinal product, tensor
product, order dimension, rectangle cover, square cover, block cover.

1 Motivation

The order 2-dimension of a complete lattice L := (L,≤), dim2(L), is the smallest
n such that an order embedding, that is an order preserving and reflecting map,
from L to the powerset of an n-element set P(n) exists. This can be seen as a
measure of L’s "complexity" with respect to set representations.

For two complete lattices L1 and L2 with dim2(L1) = m and dim2(L2) = n
the tensor product, L1 ⊗ L2, admits an order embedding to P(mn)1. Hence,
dim2(L1 ⊗ L2) is less or equal to dim2(L1) dim2(L2). Equality would be an
analogue to vector spaces where dim(V1 ⊗ V2) = dim(V1) dim(V2) holds. In the
case of complete lattices, this is also a question whether the "complexity" of
L1 ⊗L2 always grows in the same way as the one of P(mn) ∼= P(m) ⊗P(n) does.
But, it turns out that the tensor product is generally not multiplicative with
respect to the order 2-dimension.

In this paper we will analyze a sufficient condition when multiplicativity holds.
This will be achieved by studying a set cover problem which is equivalent to the
determination of the order 2-dimension. In Section 4 we will take a more universal
approach and present a general result about set cover problems and their product.
This will be applied to different notions of dimension in formal concept analysis
(Section 2) and dimensional concepts of tolerance spaces (Section 3). The latter
one have interpretations in graph theory, which we will elaborate on too.

1 This fact is a consequence of Theorem 2, as we will show in Section 5.
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2 Basics Of Formal Concept Analysis

In this section, we will provide the facts from formal concept analysis that we
will use in the sequel. If not mentioned otherwise, all results can be found in [7].

A formal context is a triple K = (G,M, I), where the incidence I ⊆ G×M
is a binary relation between finite sets. For A ⊆ G and B ⊆ M , we define two
derivation operators:

AI := {m ∈ M | ∀a ∈ A : (a,m) ∈ I} =
⋂

a∈A

{a}I ,

BI := {g ∈ G| ∀ b ∈ B : (g, b) ∈ I} =
⋂

b∈B

{b}I .

If AI = B and BI = A, the pair (A,B) is called a formal concept and the
cartesian product A × B is a maximal rectangle of K. The set of all formal
concepts of K is denoted by B(K) and defines the concept lattice B(K), via the
order (A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2. The complementary context is defined
as Kc = (G,M, Ic) := (G,M, (G × M) − I). Furthermore, two special formal
concepts of importance are the object concepts γ(g) := ({g}I

I , {g}I) and attribute
concepts µ(m) = ({m}I , {m}I

I). It holds that:

gIm ⇐⇒ γ(g) ≤ µ(m). (1)

For two contexts K1 = (G1,M1, I1) and K2 = (G2,M2, I2), we use notation
from [4] and define the direct product K1 ×̌K2 := (G1 ×G2,M1 ×M2, I1 ×̌ I2 ),

((g, h), (m,n)) ∈ I1 ×̌ I2 :⇐⇒ (g,m) ∈ I1 or (h, n) ∈ I2

and the cardinal product K1 ×̂K2 := (G1 ×G2,M1 ×M2, I1 ×̂ I2 ),

((g, h), (m,n)) ∈ I1 ×̂ I2 :⇐⇒ (g,m) ∈ I1 and (h, n) ∈ I2.

It follows that the direct and cardinal product fulfill De Morgan laws:

(K1 ×̌K2)c = Kc
1 ×̂Kc

2 and (K1 ×̂K2)c = Kc
1 ×̌Kc

2. (2)

For two complete lattices L1 and L2 the tensor product L1 ⊗L2 is the concept
lattice B(L1 ×̌L2), where L1 and L2 are considered as formal contexts with
respect to their order relations. The concept lattice of the direct product is
isomorphic to the tensor product of the factors concept lattices.

B(K1 ×̌K2) ∼= B(K1) ⊗ B(K2). (3)

Next, we will treat the dimension theory of formal concepts. A Ferrers rela-
tion is a relation F ⊆ G×M such that (g,m), (h, n) ∈ F implies (g, n) ∈ F or
(h,m) ∈ F . The definition states that F can be brought into a stair-shaped form
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by permuting the rows and columns. This is equivalent to B(G,M,F ) being a
chain. The length l of F is defined as l(F ) := #B(G,M,F ) − 1 and F is k-step if
k = #{ {g}F | g ∈ G}. Furthermore, it holds that the complement F c of a k-step
Ferrers relation is a Ferrers relation of length k.

Let Ferr↾(K) denote the set of all Ferrers relations contained in I and Ferr⇂(K)
the set of all Ferrers relations containing I. We define the Ferrers cover number2

and the Ferrers dimension of K:

fc(K) := min{#F | F ⊆ Ferr↾(K), I =
⋃

F ∈F
F},

fdim(K) := min{#F | F ⊆ Ferr⇂(K), I =
⋂

F ∈F
F}.

Analogously, Ferr↾k(K) denotes the set of all at most k-step Ferrers relations
contained in I and Ferr⇂k(K) the set of all Ferrers relations with length less
than k containing I. We define the the Ferrers k-cover number2 and the Ferrers
k-dimension:

fck(K) := min{#F | F ⊆ Ferr↾k(K), I =
⋃

F ∈F
F},

fdimk(K) := min{#F | F ⊆ Ferr⇂k(K), I =
⋂

F ∈F
F}.

Especially, we want to highlight fc1, the rectangle cover number3:

rc(K) := min{#F | F ⊆ B(K), I =
⋃

(A,B)∈F
A×B}.

Let AI be the adjacency matrix of the incidence relation I. In [1] it is implicitly
shown that rc(K) = rB(AI), where rB denotes the Boolean rank4.

Lastly, we will state the dimension theory of complete lattices and relate it
to the above defined dimensions of formal contexts. The order dimension of a
complete lattice L, dim(L), is the least number of chains, such that L can be order
embedded in their product. If we restrict the cardinality of these chains to be at
2 This term is introduced by us, although the concept itself is described in [7].
3 In the context of Formal Concept Analysis, this term is introduced by us. With

respect to Boolean matrices it has already been used in [10].
4 The Boolean rank, rB, of an n×m Boolean matrix C is the least integer k such that

Boolean m× k and k×n matrices with C = A ◦B exist. This definition is equivalent
to the fact that C is the sum of k rank one matrices (see [13]).
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most k, we get the k-dimension of L, denoted by dimk(L). Of special interest
will be the 2-dimension. That is because the n-fold direct product of chains of
cardinality 2 is isomorphic to the powerset lattice of the n-element set n. It holds
that fc(K) = fdim(Kc) = dim(B(Kc)), fck−1(K) = fdimk(Kc) = dimk(B(Kc))
and rB(AI) = rc(K) = fdim2(Kc) = dim2(B(Kc)).

In the next section, we will need a proposition from [6] and we will also make
use of some definitions from its proof.

Proposition 1. [6, Hilfssatz 32] There exists an order embedding from B(K)
into a complete lattice L if and only if there exist mappings α : G → L and
β : M → L with

gIm ⇐⇒ α(g) ≤ β(m).

Proof. "⇒": The required order embedding is given through φ(A,B) :=
∨

g∈A α(g).
"⇐": Define α := φ ◦ γ and β := φ ◦ µ.

3 Tolerance Spaces, Dimension And Graph Theory

A tolerance relation or simply a tolerance is a reflexive and symmetric binary
relation τ on a non-empty finite set V . The pair (V, τ) =: T is called tolerance
space and is a special case of a formal context. An introduction to tolerance
spaces together with applications can be found in [8] and [9].

For a tolerance τ on V , a non-empty subset S ⊆ V is called τ -preblock if S×S
is contained in τ . A maximal τ -preblock with respect to set inclusion is called
τ -block. In other words, this means that a τ -block S ⊆ V defines a non-enlargeable
square S × S ⊆ τ . The set of all τ -blocks is denoted by Bl(T). Analogously, the
set of all maximal squares of T is denoted by Sq(T). This set determines the
tolerance τ , that is τ =

⋃
Sq(T). But often not all squares are necessary to cover

τ . This motivates the definition of the square cover number5, sc(T), of a tolerance
space T, as the minimal number of maximal squares necessary to cover τ :

sc(T) := min{#S | S ⊆ Sq(T), τ =
⋃

S}.

Another covering problem of tolerance spaces is the block cover number6:

bc(T) := min{#B | B ⊆ Bl(T), V =
⋃

B}.

Similarly to the Ferrers cover numbers and rectangle cover number of general
formal contexts, we can relate these cover numbers of tolerance spaces to an
5 This term is introduced by us and is a logical consequence of the term "rectangle

cover number".
6 This term is introduced by us.
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intersection problem and a dimension of the complements concept lattice.

We start with the square cover number and notice that the complement
of a square is a symmetric Ferrers relation of length 1. Hence, we define the
symmetric Ferrers 2-dimension of Tc, denoted by sfdim2, as the smallest number
of symmetric Ferrers relations of length 1 whose intersection is equal to τ c.

The concept lattice7 B(Tc) was characterized in [12] as a complete ortholattice.
This is a complete bounded lattice L = (L,≤, c) with an involutory antiauto-
morphism c, such that for all x ∈ L it holds that x ∧ xc = 0 and x ∨ xc = 1. An
abstract orthogonality relation ⊥ is defined through x ⊥ y :⇐⇒ x ≤ yc. In the
special case of concept lattices the orthocomplement is given via (A,B)c := (B,A).

Definition 1. An orthoembedding, between two complete ortholattices L1 =
(L1,≤, c1) and L2 = (L2,≤, c2), is an order embedding φ : L1 → L2 which
additionally preserves orthogonality (x ⊥ y =⇒ φ(x) ⊥ φ(y)), such that there
exists an order preserving map ψ : L2 → L1 satisfying for all x ∈ L1:

1. ψ(φ(x)) = x,
2. ψ(φ(x)c2) = xc1 .

Remark 1. The map φ is a section from L1 to L2, such that φ and the dual of φ
given by

φd : L1 → L2, x 7→ (φ(xc1))c2

have ψ as a common retraction.

Fig. 1. The maps φ and φd := c2 ◦ ϕ ◦ c1, and their common retraction ψ.

L1

L2

L1

L2

φ

c2

c1

ψ

The next proposition provides an equivalent condition for the existence of an
orthoembedding from B(Tc) to a Boolean algebra (in other words a distributive
ortholattice) with the additional property that x ⊥ y ⇐⇒ x ∧ y = 0.

7 The concept lattice was treated under the name neighborhood ortholattice.
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Proposition 2. There exists an orthoembedding φ from B(Tc) into a Boolean
algebra L = (L,≤, c), with the special property that for all x, y ∈ L it holds that
x ⊥ y ⇐⇒ x ∧ y = 0, if and only if there exists a mapping α : V → L with

uτ cv ⇐⇒ α(u) ⊥ α(v).

Proof. "⇒": We define α := φ ◦ γ and use Equation 1 to conclude that:

u τ cv ⇐⇒ γ(u) ≤ µ(v) = γ(v)c

⇐⇒ γ(u) ⊥ γ(v)
=⇒ φ ◦ γ(u) ⊥ φ ◦ γ(v).

u τ cv ⇐⇒ γ(u) ≤ γ(v)c

⇐= ψ(φ ◦ γ(u)) ≤ ψ((φ ◦ γ(v))c)
⇐= φ ◦ γ(u) ≤ (φ ◦ γ(v))c

⇐⇒ φ ◦ γ(u) ⊥ φ ◦ γ(v).

"⇐": We define φ(A,B) :=
∨

a∈A α(a). It follows from Proposition 1 that φ is an
order embedding. Let (A,B) and (C,D) be formal concepts of B(Tc). We show
that (A,B) ⊥ (C,D) =⇒ φ(A,B) ⊥ φ(C,D). From the definition of φ and the
complement in B(Tc) it follows that:

(A,B) ⊥ (C,D) ⇐⇒ (A,B) ≤ (D,C) ⇐⇒
∨

a∈A

α(a) ≤
∨

d∈D

α(d), (4)

φ(A,B) ⊥ φ(C,D) ⇐⇒
∨

a∈A

α(a) ∧
∨

c∈C

α(c) = 0. (5)

In the next step, we show that 4 implies 5 by "connecting" the ends.
"(4)⇒(5)": Since, (C,D) is a formal concept it holds that α(d) ≤ α(c)c for all
d ∈ D and all c ∈ C.

(4) ⇒
∨

a∈A

α(a) ≤
∨

c∈C

α(c)c ⇒
∨

a∈A

α(a) =
∨

a∈A

α(a) ∧
∨

c∈C

α(c)c.

Finally, we take the meet with
∨

c∈C α(c) and use distributivity.
∨

a∈A

α(a) ∧
∨

c∈C

α(c) = (
∨

a∈A

α(a) ∧
∨

c∈C

α(c)c) ∧
∨

c∈C

α(c) = 0.

Furthermore, we define the desired map ψ : L → B(Tc) through ψ(x) :=
({v ∈ V | α(v) ≤ x}, {v ∈ V | x ≤ α(v)c}) and show that ψ(x) is a formal
concept of B(Tc), as well as that ψ satisfies Property 1 and 2 from Definition
1. The proof is similar to some parts of the proof from the Basic Theorem on
Concept Lattices (see [7]). Also note that ψ is order preserving.

The definition of formal concepts states that Aτc = B and Bτc = A must
hold in order for (A,B) ∈ B(Tc). We only show the second condition as the first
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one can be shown in the same way.

u ∈ {v ∈ V | α(v) ≤ x} ⇐⇒ α(u) ≤ x

⇐⇒ α(u) ≤ α(w)c for all w ∈ {v ∈ V | x ≤ α(v)c}
⇐⇒ u τ cw for all w ∈ {v ∈ V | x ≤ α(v)c}
⇐⇒ u ∈ {v ∈ V | x ≤ α(v)c}τc .

Next, we show that the second component from ψ(φ(A,B)) equals B. The
first component must then be equal to A, due to the fact shown above.

{v ∈ V |
∨

a∈A

α(a) ≤ α(v)c} = {v ∈ V | α(a) ≤ α(v)c for all a ∈ A}

= {v ∈ V | a τ cv for all a ∈ A}
= Aτc

= B.

Lastly, we show that the first component from ψ(φ(A,B)c) equals B. The
second component must then be equal to A, due to the fact shown above. Hence,
we can conclude that ψ(φ(A,B)c) = ψ(

∧
a∈A α(a)c) = (B,A) = (A,B)c.

{v ∈ V | α(v) ≤
∧

a∈A

α(a)c} = {v ∈ V | α(v) ≤ α(a)c for all a ∈ A}

= {v ∈ V | v τ ca for all a ∈ A}
= Aτc

= B.

Definition 2. The orthodimension of a complete ortholattice L = (L,≤, c),
denoted by dim⊥(L), is the smallest n such that there exists an orthoembedding
from L to P(n).

Theorem 1. For a tolerance space T its holds that sc(T) = dim⊥(B(Tc)).

Proof. If sc(T) = n, there exists a minimal square cover {S1 × S1, . . . , Sn × Sn}.
It follows from [5] that this is equivalent to the existence of a minimal set
representation of T, which is a map α : V → P(n), such that we have uτv ⇐⇒
α(a) ∩ α(v) ̸= ∅. From the minimal square cover, this map can be defined via:

α : v 7→ {i | v ∈ Si}.

Consequently, α provides a minimal complementary set representation for
Tc, that is u τ cv ⇐⇒ α(a) ∩ α(v) = ∅. Since it holds that α(a) ∩ α(v) = ∅ ⇐⇒
α(a) ⊆ α(v)c ⇐⇒ α(a) ⊥ α(v), Proposition 2 yields that dim⊥(B(Tc)) = n. As
all stated implications are equivalences, it follows that sc(T) = dim⊥(B(Tc)).
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We have shown that analogue to general formal contexts, in the special case
of tolerance spaces, it holds that:

sc(T) = sfdim2(Tc) = dim⊥(B(Tc)).

Next, we will treat the block cover number. For this, we will use some tools
from graph theory which we introduce in the following.

The underlying graph, GT, of a tolerance space T = (V, τ) is defined through
the same relation but with all diagonal elements removed. Analogously, to the
block and square cover number of T, we can define the vertex clique cover
number, θv(GT) = bc(T), and the edge clique cover number, θe(GT) = sc(T) (see
[3]). The vertex clique cover number is equal to the chromatic number of the
complementary graph (see [14]), χ(Gc

T)8. Here the complement is taken in the
sense of graph theory, which always yields an irreflexive relation. On the other
hand, for tolerance spaces we consider full complements as defined in Section 2.
This yields bc(T) = χ(Tc), since τ c is irreflexive and symmetric.

We saw that B(Tc) is a complete ortholattice. An orthomap between complete
ortholattices (see [12]) preserves order and orthogonality, and maps only the
bottom element of the domain lattice to the bottom element of the codomain
lattice.

Definition 3. We define the chromatic dimension, cdim(L), of a complete ortho-
lattice L = (L,≤, c), to be the minimal n such that an orthomap to the powerset
lattice P(n) exists.

The nomenclature is justified by the following proposition.

Proposition 3. For a graph G = (V,E) with an irreflexive and symmetric
relation E ⊆ V × V , it holds that χ(G) = cdim(B(G)).

Proof. The chromatic number of G is n if and only if n is minimal with the
property that there exists a graph homomorphism to Kn, the complete graph with
n vertices. In [12] it is shown that this is equivalent to the existence of an orthomap
from B(G) to P(n) ∼= B(Kn). Consequently, it holds that cdim(B(G)) = n.

The calculation of the chromatic number is a minimization problem, but not
an intersection problem. In order to define an intersection problem, we notice
that the complement Bc for a block B ∈ Bl(T) is an independent set of vertices
with respect to τ c. Hence, we can define an intersection problem with respect to
Tc. This yields the independence dimension of Tc, denoted by idim(Tc), to be
the smallest number of independent sets whose intersection is empty.

bc(T) = idim(Tc) = χ(Tc) = cdim(B(Tc)).
8 The chromatic number of a graph is the minimal n such that a graph homomorphism,

which is an edge preserving vertex map, to the complete graph with n vertices exists.
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4 Set Cover Problems And Their Product

A set cover system is a triple S := (U,X,S), with universe U , a subset X ⊆ U
and S ⊆ P(X). The cover number and isolation number of S are defined as:

c(S) := min{#S̃ | S̃ ⊆ S, X =
⋃

S̃},
i(S) := max{#X̃ | X̃ ⊆ X,∀S ∈ S : #(X̃ ∩ S) ≤ 1}.

The isolation number is the maximal cardinality of an isolated set X̃ from S,
which means that X̃ is maximal with respect to the property that any pair of its
elements is not contained in the same S ∈ S. Consequently, the isolation number
is a lower bound for the cover number.

Remark 2. Both optimization problems can be described as an integer linear
program. For this purpose, we define the representation matrix A ∈ {0, 1}X×S

of S through A(i, S) = 1 :⇔ i ∈ S.

minimize:
∑

S∈S
xS

subject to: Ax ≥ 1

xS ∈ {0, 1}.

maximize:
∑

i∈X

yi

subject to: AT y ≤ 1

yi ∈ {0, 1}.
Thus, the inequality i(S) ≤ c(S) also follows from the weak duality theorem

of optimization and the difference c(S) − i(S) is the duality gap.

A set intersection system is a triple S := (U,X,S), with universe U , a subset
X ⊆ U and S ⊆ P(U), such that X ⊆ S for all S ∈ S. The intersection number
is defined as:

int(S) := min{#S̃ | S̃ ⊆ S, X =
⋂

S̃}.

It follows that the complement of a set cover system, defined through
Sc := (U,Xc, {Sc | S ∈ S})9, is a set intersection system with c(S) = int(Sc).

The product of two set cover systems S1 = (U1, X1,S1) and S2 = (U2, X2,S2)
is defined as S1 × S2 := (U1 ×U2, X1 ×X2,S1 × S2). This definition yields to the
next theorem which is a generalization of Theorem 3.2 from [13].

Theorem 2. For the the product of set cover systems S1 and S2, it holds that:

max( i(S1) c(S2), c(S1) i(S2)) ≤ c(S1 × S2) ≤ c(S1) c(S2)
i(S1) i(S2) ≤ i(S1 × S2) ≤ min( i(S1) c(S2), c(S1) i(S2)).

9 The complements are defined with respect to U .

Cover Problems, Dimensions And The Tensor Product Of Complete Lattices 89



Proof. We prove the first inequality and the second one follows from duality. For
the upper bound, let S̃1 and S̃2 be minimal covers from S1 and S2 respectively.
It is easy to see that S̃1 × S̃2 is a cover from S1 × S2.

For the lower bound, let S̃ be a minimal cover from S1 ×S2 and X̃1 a maximal
isolated set from S1. We define for i ∈ X̃1 the set S̃i := {(S, T ) | (S, T ) ∈ S̃, i ∈
S}. Since X̃1 is an isolated set, it follows that for different i, j ∈ X̃1, the sets S̃i

and S̃j are disjoint. A similar argument implies that every S̃i induces a cover
from S2 and hence #S̃i ≥ c(S2). These facts yield:

#S̃ ≥ #(
⋃
+

i∈X̃1

S̃i) ≥ #X̃1 c(S2) = i(S1) c(S2).

The other lower bound’s component can be deduced in the same way.

5 Dimension Of The Tensor Product Of Complete
Lattices

With Theorem 2, it is easy to provide a sufficient condition when dim, dimk, dim2,
dim⊥ and cdim are multiplicative with respect to the tensor product. Since every
complete lattice is isomorphic to a concept lattice ([7]), we can shift this problem
to the multiplicativity of the associated intersection number with respect to the
direct product (Equation 3). Furthermore, due to Equation 2, we transform this
problem to the multiplicativity of the corresponding cover number with respect
to the cardinal product. All we have to do is to define suitable set cover systems
and show that there product expresses the cardinal product of the underlying
formal contexts.

In the sense of Section 4, we define the Ferrers isolation number fi, the
k-Ferrers isolation number fik, the rectangle isolation number ri, the square
isolation number si and the block isolation number bi.

Fig. 2. This table gives an overview about the set cover problems introduced
above. Note that B(K) actually denotes a set of formal concepts, but here we
identify it with the set of all rectangles.

set cover system cover n. isolation n. intersection n. lattice dim.

(G×M, I,Ferr↾(K)) fc(K) fi(K) fdim(Kc) dim(B(Kc))

(G×M, I,Ferr↾k−1(K)) fck−1(K) fik−1(K) fdimk(Kc) dimk(B(Kc))

(G×M, I,B(K)) rc(K) ri(K) fdim2(Kc) dim2(B(Kc))

(V × V, τ,Sq(T)) sc(T) si(T) sfdim2(Tc) dim⊥(B(Tc))

(V, V,Bl(T)) bc(T) bi(T) idim(Tc) cdim(B(Tc))
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For the cardinal product of formal contexts, it holds that (A,B) ∈ B(K1 ×̂K2)
if and only if there exists (A1, B1) ∈ B(K1) and (A2, B2) ∈ B(K2), such that
A = A1×A2 and B = B1×B2 (see [11]). Only the formal concepts with A ̸= ∅ and
B ̸= ∅ are of importance for the covering problems of the cardinal product, since
they correspond to maximal rectangles. Hence, these formal concepts (A,B) can
be uniquely identified with the pair ((A1, B1), (A2, B2)). Comparing this with the
definition of the product of set cover systems, we see the desired correspondence
to the cardinal product of the respective formal contexts. The same holds for the
Ferrers relations. Also note that squares are a special case of rectangles and that
blocks are derived from maximal squares. These fact yield the following theorem.

Theorem 3. We consider the set cover problems of Figure 2 and their products.
If for one of the factors, it holds that the isolation number is equal to the cover
number, then the respective lattice dimension is multiplicative with respect to the
tensor product of the corresponding complete lattices.

Remark 3. We introduce the strong product of two simple graphs G1 = (V1, E1)
and G2 = (V2, E2), defined as G1⊠G2 := (V1×V2, Ẽ), with (u1, u2)Ẽ(v1, v2) :⇐⇒
(u1E1v1 and u2 = v2) or (u1 = v1 and u2E2v2) or (u1E1v1 and u2E2v2).

The reflexive closure of a graph G = (V,E) is defined as Gref := (V,Eref),
where Eref is the reflexive closure of the symmetric relation E. Hence, Gref is a
tolerance space. It holds that (G1 ⊠G2)ref = Gref

1 ×̂Gref
2 . Consequently, we have

that θe(G1 ⊠G2) = sc(Gref
1 ×̂Gref

2 ). In [2] the multiplicativity of the edge clique
cover number with respect to the strong product was studied and similar results
as with the square cover number of the cardinal product of tolerance spaces have
been obtained. That is why this setting would provide another example of a set
cover system and its product.

In [2] an example such that θe(G⊠G) < θe(G)θe(G) was provided for G being
the join of a 5-cycle with two isolated vertices. We did a computational experiment
to find the smallest tolerance space (in terms of the number of vertices) for which
the square isolation number is strictly smaller than the square cover number.
Thereby, we found out that the smallest tolerance space has 7 vertices and is the
reflexive closure of the graph G described above.

6 Conclusion

We showed that the three fold relationship between cover problem (Ferrers
cover number), intersection problem (Ferrers dimension) and lattice dimension
(order dimension) also applies to tolerance spaces. That is the equality of the
square cover number, the symmetric Ferrers 2-dimension and the orthodimension.
Surprisingly, this theme is also present in the case of the block cover number and
the chromatic dimension.

Additionally, we highlighted how the cover problems with respect to tolerance
spaces have a strong graph theoretic flavor, i.e., interpretations in terms of the
chromatic number or the relationship to the strong product of graphs.

Our initial question, about the multiplicativity of the lattice dimension
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with respect to the tensor product, could, in all investigated examples, be
translated to a cover problem of the cardinal product of the related formal
contexts complements. This fundamental principle lead to the abstraction to the
general set cover problem, which provides a unified setting to treat these various
cover problems related to formal contexts. Especially, the question about the
multiplicativity of the dimension of the cardinal product could be dealt with in a
unified way. This in turn lead to a sufficient condition for the multiplicativity of
the lattice dimensions with respect to the tensor product of complete lattices.

The introduced isolation numbers have to our knowledge not been present
in the theory of formal concept analysis. It is an open problem to find a purely
lattice theoretical interpretation of these isolation numbers.

Acknowledgments. Finally, we want thank the anonymous referees for their
effort and valuable suggestions.
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Abstract. We discuss a method of retrieving unexpected objects for a
given query, where each data object is represented as a feature vector
and assigned a multi-label as well. Given an object-feature matrix X1

and an object-label matrix X2, we try to simultaneously factorize X1

and X2 as X1 ≈ BV and X2 ≈ SW by means of Nonnegative Shared
Subspace Method, where the basis S is a part (subspace) of the basis B.
With the help of the shared subspace, thus, we can predict a multi-label
for a query feature-vector with unknown labels. Our unexpected object
for the query is defined as an object which is similar to the query in
the feature space, but is dissimilar in the label space. In order to obtain
unexpected objects from several viewpoints of similarity, we formalize
our retrieval task as a problem of finding formal concepts satisfying a
constraint w.r.t. the unexpectedness. We present an efficient depth-first
branch-and-bound algorithm for extracting our target concepts.

Keywords: formal concept, shared subspace method, nonnegative matrix fac-
torization, unexpectedness of objects, multi-labels, recommendation

1 Introduction

Information Retrieval (IR) is a fundamental task in our daily life. In popular
keyword-based IR, since it is not easy to get desirable data objects by provid-
ing query keywords just once, we iteratively input queries until we can meet
satisfiable results. Particularly, in Associative Search [9], at each step we re-
peatedly input a query, our query is shifted to its sibling concept [10]. As the
results, we often find an interesting search result which is surprising or unex-
pected for us but still keeps a certain degree of relevance to our initial query.
The authors consider that such an aspect of associative search is strongly de-
sirable especially for recommendation-oriented IR systems. This paper discusses
a recommendation-oriented method for finding interesting objects for a given
query, especially taking an unexpectedness of objects for the query into account.

A notion of unexpectedness in recommender systems has been discussed
in [14]. In the framework, the unexpectedness of an item (object) is evaluated

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 93–104,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
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based on a distance between the item and those a user already knows in some
sense. Another related notions, novelty and serendipity, have also been investi-
gated in [16]. An object is said to be novel for a user if he/she does not know it.
For example, it can be evaluated based on user’s history of recommendations.
On the other hand, since the notion of serendipity is emotional and difficult to be
defined, it has been discussed in terms of diversity which is based on dissimilarity
among objects [16]. It is noted here that those notions previously proposed are
subjectively defined because we need some kind of user-dependent information.

In contrast with them, we propose an objective unexpectedness of objects. A
data object is usually represented as a vector in a primary feature space. Then,
the notions of novelty and serendipity have been formalized with the help of
additional information specific to particular users. Nowadays, however, several
kinds of additional information are also commonly available. In case of movie
objects, for example, each movie would be primarily represented as a vector
of feature terms extracted from their plots. In addition, each movie is often
assigned some genre labels by commercial companies or many SNS users. Since
those secondary features provide us valuable information about movies, they
would make our IR systems more flexible and useful for a wide range of users.

In our framework, as such commonly-available additional features, we assume
each object is assigned some labels (as a multi-label) beforehand. That is, our
data objects are given by two data matrices, X1 and X2, each of which represents
an object-feature relation and object-label relation, respectively. Then, we propose
our notion of unexpectedness with respect to label-information of objects.

More concretely speaking, in our recommendation-oriented IR, a query q
is given as a feature vector and supposed to have no label. As a reasonable
guess, we often consider that if an object x is similar to q in the feature space,
q would also have a multi-label similar to that of x. Conversely, if we observe
(by any means) their multi-labels are far from each other, we would find some
unexpectedness of x for q because they have distant multi-labels even though
their features are similar. Based on the idea of unexpectedness, we formalize our
IR task as a problem of detecting formal concepts [12] each of which contains
some unexpected objects in the extent. By finding those formal concepts, we can
obtain our search results from various viewpoints of similarity among the query
and objects.

The point in our IR is to predict a multi-label of the query represented as
a feature-vector. For the task, our object-feature matrix X1 and object-label
matrix X2 are simultaneously factorized as X1 ≈ BV and X2 ≈ SW by Non-
negative Shared Subspace Method [1], where the basis S is a part (subspace) of
the basis B. In a word, such a shared subspace associates the label-information
with the feature-information of the original matrices. With the shared subspace,
we can predict a multi-label for the query feature-vector with unknown labels.

To predict a multi-label of a given object, a method of multi-label classifi-
cation has already been proposed in [8]. In the method, we need to obtain a
subspace and its orthogonal basis for the original feature space which approxi-
mately reflects similarity among multi-labels assigned to the objects by solving
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an eigenvalue problem. However, such an orthogonal basis yields negative com-
ponents in the subspace which complicate interpretation of our search results.
Moreover, orthogonality is not necessarily required in prediction purpose. As
its simplified and efficient version, a prediction method has also been discussed
in [17], where a subspace is just defined as a real line. However, the prediction is
not so reliable as we will see later. This is the reason why we prefer nonnegative
factorization in our framework.

In our recommendation-oriented IR, for a given query, we try to find formal
concepts whose extents contains some unexpected objects for the query. We
first create a formal context consisting of only objects similar (relevant) to the
query in the feature space with a standard Nonnegative Matrix Factorization [2].
Then, we try to extract concepts with unexpected ones in the context. Since we
often have a huge number of concepts, we evaluate a concept with its extent E
by the average distance between each object in E and the query in the label-
subspace, and try to extract concepts with the top-N largest evaluation values.
We present a depth-first algorithm for finding those top-N concepts, where a
simple branch-and-bound pruning based on the evaluation function is available.
Our experimental result for a movie dataset shows our system can actually detect
an interesting concept of movies whose plots are similar to a given query but
some of them have genre-labels which are far from predicted genres of the query.

From the viewpoint of Formal Concept Analysis (FCA) [12], our study in this
paper is closely related to several interesting topics. In order to reduce the size
of formal context preserving important information, methods with non-negative
matrix factorizations have been investigated in [3, 5]. Although our method is
also based on such a factorization technique, the main purpose is not only to
reduce the context but also to associate label information with the reduced
context.

A smaller lattice with a reduced number of concepts is desirable as a practical
requirement in FCA. Computing a subset of possible concepts, e.g., in [6], is
a useful approach for that purpose. Interestingness measures of concepts can
meaningfully restrict our targets to be extracted and several representatives are
surveyed in [4]. Although our method also proposes a kind of interestingness
based on unexpectedness of objects, we emphasize that it is a query-specific one.

2 Approximating Data Matrices Based on Nonnegative
Shared Subspace Method

In this section, we discuss how to simultaneously approximate a pair of data
matrices representing different informations of the same (common) objects. The
approximation is based on Nonnegative Shared Subspace Method [1].

2.1 Approximating Object-Feature Matrix Reflecting Multi-Label
Information

Let X1 =
(
f1 · · · fN

)
be an M×N object-feature matrix and X2 =

(
`1 · · · `L

)

an M × L object-label matrix, where each object is represented as a row-vector.
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As will be discussed later, in our experimentation, movies are regarded as objects
and terms (word) in their plots as features. In addition, each movie is assigned
a set of genre-labels as its multi-label.

Since each object is often represented as a high-dimensional feature vector, it
would be required to compress the matrix X1. Moreover, although the number
of possible labels would be less than that of features, the matrix X2 also tends to
be sparse because each object has only a few labels in general. We, therefore, try
to compress both X1 and X2 by means of Nonnegative Matrix Factorization [2].

More formally speaking, X1 and X2 are approximated as follows:

X1 ≈
(
f̃1 · · · f̃K

)
V, where V = (vij)ij , fj ≈

K∑

i=1

vij f̃i

X2 ≈
(

˜̀
1 · · · ˜̀

KL

)
WL, where WL = (wLij)ij , `j ≈

KL∑

i=1

wLij
˜̀
i.

It is noted here that
(
f̃1 · · · f̃K

)
is a compressed representation of X1 and(

˜̀
1 · · · ˜̀

KL

)
that of X2. As has been stated previously, we especially try to use

the latter matrix
(

˜̀
1 · · · ˜̀

KL

)
as a part of the former

(
f̃1 · · · f̃K

)
in order to

associate the label-information with the feature-information in our approxima-
tion process. That is, assuming a (KF = K−KL)×N coefficient matrix VF and
a KL ×N coefficient matrix VL, we try to perform approximations such that

X1 ≈
(
f̃1 · · · f̃KF

˜̀
1 · · · ˜̀

KL

)(VF
VL

)
=
(
f̃1 · · · f̃KF

)
VF +

(
˜̀
1 · · · ˜̀

KL

)
VL,

X2 ≈
(

˜̀
1 · · · ˜̀

KL

)
WL.

Note that the original column-vector fi of X1 is approximated by a linear com-
bination of basis vectors f̃j in F = (f̃1 · · · f̃KF

) and ˜̀
j in L = (˜̀

1 · · · ˜̀
KL

)
which are respectively unaffected and affected by label-compression.

In order to obtain a certain degree of quality in the approximation process,
we have to care a balance between feature and label-compressions. Following [1],
we take into account Frobenius Norm of the original matrices X1 and X2 and
try to solve the following optimization (minimization) problem:

min

∣∣∣∣
∣∣∣∣X1 −

(
F |L

)(VF
VL

)∣∣∣∣
∣∣∣∣
2

F

‖X1‖2F
+
‖X2 − LWL‖2F
‖X2‖2F

,

where ‖X1‖F and ‖X2‖F can be treated as constants.
Based on a similar discussion to the standard formulation of NMF [2], we

can obtain a set of multiplicative update rules for the optimization problem [1].
With element-wise expressions and λ = ‖X1‖2F /‖X2‖2F , we have

(L)ij ← (L)ij × (S)ij , (1)
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where (S)ij is given by

1

(S)ij
=

(LVLV
T
L + FVFV

T
L )ij

(X1V TL + λX2WT
L )ij

+ λ
(LWLW

T
L )ij

(X1V TL + λX2WT
L )ij

(2)

for L defining the shared subspace. And, for V =

(
VF
VL

)
, WL and F , we have

(V )ij ← (V )ij
(
(
F |L

)T
X1)ij

(
(
F |L

)T (
F |L

)
V )ij

, (3)

(WL)ij ← (WL)ij
(LTX2)ij

(LTLWL)ij
and (4)

(F )ij ← (F )ij
(X1V

T
F )ij

(LVLV TF + FVFV TF )ij
. (5)

2.2 Predicting Unknown Labels of Query

Based on the matrix factorization discussed above, we can predict a multi-label
of a given query. We assume our query q with unknown-label is given as just an
N -dimensional (feature) vector, that is, q = (qi)1≤i≤N . A prediction about labels

of q can be performed by computing a coefficient vector for the basis vectors ˜̀
j

reflecting label-information of objects in the factorization process. More precisely
speaking, the query can be represented as

q =
N∑

i=1

qifi, where fi ≈
KF∑

j=1

vFjif̃j +

KL∑

j=1

vLji
˜̀
j .

Then we have

q ≈
KF∑

j=1

(
N∑

i=1

qiv
F
ji

)
f̃j +

KL∑

j=1

(
N∑

i=1

qiv
L
ji

)
˜̀
j .

Thus, the (KL-dimensional) coefficient vector for ˜̀
j can be given by VLq.

After the approximation, each object x is represented by its corresponding
row-vector vTx in the compressed matrix L =

(
˜̀
1 · · · ˜̀

KL

)
reflecting their orig-

inal label-information. Therefore, a distance between vx and VLq provides us a
hint about which labels the query would have. If the vectors are close enough,
q seems to have labels similar to those of x. In other words, we can evaluate
a farness/closeness between labels of x and q by defining an adequate distance
function for those vectors. In the following discussion, we assume a distance func-
tion, distL, based on cosine similarity between vectors. That is, for an object x

and a query q, it is defined as distL(x, q) = 1− vTx VLq
||vx|| ||VLq|| .
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2.3 Evaluating Similarity among Features of Objects

As is similar to the case of labels, we can evaluate similarity among features
of objects based on the compressed matrix (F |L). However, since the matrix is
affected by not only the feature compression but also the label compression, it
would not be adequate for evaluating only similarity of features. For our evalua-
tion of feature similarity, therefore, we try to approximate the original matrix X1

into an M ×KT matrix HX1
with the standard NMF such that X1 ≈ HX1

WF ,
where each object x after the compression is given as its corresponding row-
vector hTx in HX1

. Therefore, we can evaluate similarity between features of x
and q by computing a distance between hx and WF q, denoted by distF (x, q).

3 Extracting Formal Concepts with Unexpected
Multi-Label Objects for Query

Towards a recommendation-oriented information retrieval, we present in this
section our method for finding formal concepts whose extents include some un-
expected objects for a given query. The reason why we try to detect formal
concepts is that the extent of a concept can be explicitly interpreted by its
intent. That is, the intent provides us a clear explanation why those objects
are grouped together. By extracting various concepts, we can therefore obtain
interesting object clusters from multiple viewpoints.

3.1 Unexpected Objects Based on Predicted Multi-Label of Query

We first present our notion of unexpectedness of objects for a given query. Es-
pecially, we propose here an objective definition for the notion.

As has been discussed, we can implicitly predict a multi-label of a given query
q with unknown-label. More precisely, we can measure a farness/closeness be-
tween labels of an object x and the query. In addition, we can evaluate similarity
of features between x and q. Suppose here that we find both x and q have similar
or relevant features. In such a case, it would be plausible that we expectedly con-
sider they also have similar/relevant multi-labels. However, if we observe their
labels are far from each other, we seem to find some unexpectedness of x for q
because they have distant multi-labels even though their features are similar.

With the distance functions, distF in the feature-subspace and distL in the
label-subspace, we can formalize this kind of unexpectedness of objects for a
given query q with unknown-label.

Definition 1. (Unexpected Object for Query)
For an object x, if x satisfies the following two constraints, then x is said to be
unexpected for the query q:

Relevance/Similarity of Features : x is relevant/similar to q in the feature-
subspace, that is, distF (x, q) ≤ δF , and

Farness of Multi-Labels : x and q are distant from each other in the label-
subspace, that is, distL(x, q) ≥ δL,

where δF (> 0) and δL (> 0) are user-defined parameters.
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3.2 Extracting Formal Concepts with Unexpected Objects

Constructing Formal Context for Query : Suppose the original object-
feature matrix X1 is approximated as X1 ≈ HX1

WF with the standard NMF,
where HX1

is regarded as a compressed representation of X1. It is recalled that
the i-th object xi in X1 is given as the i-th row-vector vTi = (vi1 · · · viKT

) in
HX1 , where the j-th element vij is the value of the feature fj for xi.

In order to extract formal concepts with unexpected objects for a given query
q, we first define a formal context Cq consisting of the objects relevant to q.
Formally speaking, with the parameter δF , the set of relevant objects is defined
as Oq = {xi | xi ∈ O, distF (xi, q) ≤ δF }. The set of features (attributes), Fq, is
simply defined as Fq = {f1, . . . , fKT

}. Moreover, introducing a parameter θ as
a threshold for feature values, we define a binary relation Rq ⊆ Oq ×Fq as

Rq = {(xi, fj) | xi ∈ Oq, vTi = (vi1 . . . viKT
) in HX1

and vij ≥ θ}.

Thus, our formal context is given by Cq = 〈Oq,Fq,Rq〉.

Evaluating Formal Concepts : It is obvious that for each formal concept
in the context Cq, its extent consists of only objects relevant to q. The extent,
however, does not always have unexpected ones. For a purpose of recommenda-
tion, since it would be desirable to involve some unexpected objects, we need to
evaluate formal concepts in Cq taking the farness of multi-labels into account.

Let us consider a concept in Cq with its extent E. We evaluate the con-
cept by the average distance between each object in E and the query in the
label-subspace. That is, our evaluation function, eval, is defined as eval(E) =∑

x∈E distL(x,q)

|E| .

Although our formal context consists of only objects relevant to the query, we
could have many concepts in some cases. We, therefore, try to obtain concepts
with the top-N largest evaluation values.

Interpreting Intents of Formal Concepts : Our formal context is con-
structed from the matrix HX1

which is a compressed representation of the orig-
inal object-feature matrix X1 approximated as X1 ≈ HX1

WF with the stan-
dard NMF. That is, the intent of a concept in the context is given as a set of
compressed features interpretable in terms of original features. The relationship
among compressed and original features is represented as the matrix WF . Each
compressed feature is given as a row-vector in WF in which larger components
can be regarded as relevant original features. When we, therefore, interpret the
intent of a concept, it is preferable to show relevant original features as well as
each compressed one in the intent. As a simple way of dealing with that, assum-
ing a (small) integer k, we can present original features corresponding to the k
largest components for each compressed feature.

3.3 Algorithm for Extracting Top-N Formal Concepts

We present our algorithm for extracting target formal concepts.
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[Input] Cq = (Oq,Fq,Rq) : a formal context obtained for a query q
N : a positive integer for top-N

[Output] FC : the set of formal concepts with the top-N largest evaluation values

procedure Main(Cq , N) :
FC = ∅ ;
α = 0.0 ; // the N-th (tentative) evaluation value of concepts in FC
Fix a total order ≺ on Oq such that for any xi, xj ∈ Oq , xi ≺ xj if distL(xi, q) ≤ distL(xj , q) ;
while Oq 6= ∅ do

begin
x = head(Oq) ;
Oq = (Oq \ {x}) ; // removing x from Oq

FCFind({x}, ∅, Oq) ; // Oq as candidate objects
end

return FC ;

procedure FCFind(P , PrevExt, Cand) :
FC = (Ext = P ′′, P ′) ; // computing FC
if ∃x ∈ (Ext \ PrevExt) such that x ≺ tail(P ) then

return; // found to be duplicate formal concept
endif
Update FC adequately so that it keeps concepts with top-N largest evaluation values found so far ;
α = the N-th (tentative) evaluation value of concepts in FC;
while Cand 6= ∅ do

begin
x = head(Cand) ;
Cand = (Cand \ {x}) ; // removing x from Cand
NewCand = (Cand \ Ext) ; // new candidate objects
if NewCand = ∅ then continue ;
if eval(P ∪ {x} ∪NewCand) < α then continue ; // branch-and-bound pruning
FCFind(P ∪ {x}, Ext, NewCand) ;

end

Fig. 1. Algorithm for Finding Top-N Formal Concepts with Unexpected Objects

Let Cq = 〈Oq,Fq,Rq〉 be a formal context constructed for a given query
q. As the basic strategy, generating extents of concepts, we explore object sets
along the set enumeration tree, rooted by ∅, based on a total ordering ≺ on Oq.
More concretely speaking, we expand a set of objects P into Px = P ∪ {x}
by adding an object x succeeding to tail(P ) and then compute ((Px)′′, (Px)′)
to obtain a formal concept, where we refer to the last (tail) element of P as
tail(P ). Such an object x to be added is called a candidate and is selected from
cand(P ) = {x | x ∈ (Oq \P ′′), tail(P ) ≺ x}. Initializing P with ∅, we recursively
iterate this process in depth-first manner until no P can be expanded.

Our target concepts must have the top-N largest evaluation values. Let us
assume the objects xi in Oq are sorted in ascending order of distL(xi, q). Based
on the ordering, along our depth-first expansion process of concepts, the eval-
uation values of obtained concepts increase monotonically. It should be noted
here that for a set of objects P ⊆ Oq, the extent E of each concept obtained by
expanding P is a subset of P ′′∪ cand(P ). Due to the monotonicity of evaluation
values, therefore, eval(P ′′ ∪ cand(P )) gives an upper bound we can observe in
our expansion process from P . This means that if we find eval(P ′′ ∪ cand(P ))
is less than the tentative N -th largest evaluation value of concepts found so far,
there is no need to expand P because we never meet any target concept by the
expansion. Thus, a branch-and-bound pruning is available in our search process.
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A pseudo-code of the algorithm is presented in Figure 1. The head element of
a set S is referred to as head(S). Although we skip details due to space limitation,
the code incorporates a mechanism for avoiding duplicate generations of the same
concept, as if statement at the beginning of procedure FCFind.

4 Experimental Result

In this section, we present our experimental result with our system.
We have prepared a movie dataset consisting of 17, 000 movies with their

plots and genres. Our dataset has been created from CMU Movie Summary
Corpus [13] 1. After preprocessing, the plot of each movie is represented as
a boolean vector of 6, 251 feature terms with medium frequency. That is, our
movie-plot matrix XP has the dimension of 17, 000 × 6, 251. Moreover, each
movie is assigned some of 364 genre-labels as its multi-label. Then, our movie-
label matrix XL is given as a boolean matrix with the dimension of 17, 000×364.
Applying Nonnegative Shared Subspace Method, we have compressed XP into
a 17, 000 × 500 matrix (F |L), where dimensions of F and L are 17, 000 × 450
and 17, 000× 50, respectively, and L is also a compressed matrix of XL.

In addition, as candidates of our queries, we have also prepared 783 movies
with only their plots, hiding their genres. Thus, our system is given a 6, 251-
dimensional boolean vector as a query obtained from those candidates.

Example of Extracted Formal Concept for “Shark Bait (2006)”
For a query vector obtained from the plot of a candidate movie “Shark Bait”,
we present here a formal concept actually detected by our system.

“Shark Bait” is a computer animated family movie released in 2006. The
story is about Pi, the main fish character, his relatives and friends while fighting
against a mean tiger shark terrorizing Pi’s reef community.

For the query vector (plot), an example of formal concept our system detected
is shown in Figure 2.

Similarity of Movie Plots : The extent of the concept consists of 5 movies
all of which are concerned with marine animals. For example, “Jaws” is a very
famous movie about a great white shark wrecking havoc in a beach resort. “Open
Water” is a suspense movie based on a real story about a couple of scuba divers
left behind in the shark-infested sea due to an accident. Moreover, “Free Willy”,
a family-oriented adventure movie, is about the friendship between a street child
and a killer whale in a local amusement park. As the intent shows, all of them
are commonly associated with 5 features compressed with NMF each of which
is related to several relevant feature terms used in the original plots. Actually,
we can observe a certain degree of similarity among the plots of the movies in
the extent. It is, furthermore, easy to see that they are also similar to the query
plot.

1 http://www.cs.cmu.edu/̃ark/personas/
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Extent (movie : genres as multi-labels)

Jaws (1975) : Thriller

Open Water (2003) :
Thriller, Natural Horror Films, Horror,

Indie, Drama, Suspense, Disaster

Jaws 3-D (1983) :
Thriller, Natural Horror Films, Horror,

Action/Adventure, Mystery, Suspense, Action

Free Willy (1993) :
Adventure, Children’s/Family, Animal Picture,

Drama, Family Film, Family-Oriented Adventure

Help! I’m a Fish (2000) :
Science Fiction, Adventure, Animation, Children’s,

Fantasy, Drama, Family Film

Intent (compressed feature : related original feature (words))

F1 : tank, fuel, leak, gasoline, oxygen
F2 : surface, beneath, descend, underwater, flood
F3 : ocean, Pacific, liner, Ocean, drift
F4 : swim, swimming, underwater, fish, dive
F5 : owe, loan, borrow, shark, fund

Fig. 2. Example of Extracted Formal Concept

Farness of Multi-Labels : As is shown in the figure, the movies in the extent
have various multi-labels. More precisely speaking, the movies are listed in de-
scending order of distance between the (implicitly) predicted multi-label of the
query and that of each movie. That is, upper movies are expected to have multi-
labels further from that of the query as unexpected ones. On the other hand,
multi-labels of lower movies would be similar to that of the query. According
to our problem setting, although the correct multi-label of the query was inten-
sionally hidden, its actual genre labels are “Family Film” and “Animation”.
It is easy to see that the lowest movie, “Help! I’m a Fish”, is categorized into
genres very similar to the actual genres of the query. In other words, the multi-
label of the query can reasonably be predicted with the help of Nonnegative
Shared Subspace Method. As the result, based on our evaluation function for
formal concepts, we can find some movies in the extent with unexpected (fur-
ther) genre labels, like “Jaws” and “Open Water”. Inspired by such a concept,
users could newly try and enjoy some movies with those unexpected genres.
Thus, our method has an ability to stimulate us to try unexperienced movies
based on unexpectedness of multi-labels.

Quality of Multi-Label Prediction : Quality of multi-label prediction would
be important in our method because our unexpectedness is based on the predic-
tion. We here observe quality of prediction by comparing two object rankings,
one is based on predicted multi-labels of the query and the other based on its
correct multi-label (hidden in our retrieval process). More concretely speaking,
for the former, each movie in the dataset is ranked in ascending order of simi-
larity between its multi-label and the predicted label of the query. The obtained
ranking is referred to as Rpred. Similarly, we also rank each movie in ascending
order of similarity between its multi-label and the correct label of the query.
We refer to the ranking as Rcorrect. Then we can compute the Spearman’s rank
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correlation coefficient between Rpred and Rcorrect. If we can observe a certain
degree of correlation, we can expect that our prediction would be reasonable.

For the above example, we actually have the coefficient of 0.35 showing a weak
positive correlation. As has been mentioned previously, a prediction method has
been discussed in [17], where prediction is performed based on a subspace defined
as a real line. For comparison, the correlation coefficient between the ranking
according to the previous method and Rcorrect is 0.03 showing little correlation.
Although the value of 0.35 seems to be a little bit small, it can be increased
to 0.84 when we focus on Top-10% ranked (1, 700) objects in the ranking. It is
noted here that our main purpose of prediction is just to identify objects whose
multi-labels are far from that of the query. In this sense, precise lower ranks in
Rpred are not matter. Therefore, we consider that the prediction of multi-labels
in our method can work well for our purpose.

5 Concluding Remark

We discussed our method of finding interesting formal concepts with unexpected
objects for a given query with no label. We defined our unexpected object for
the query as object which is similar to the query in the feature space, but is
dissimilar in the label space. In order to predict a multi-label of the query, the
original object-feature and object-label matrices are simultaneously factorized by
means of Nonnegative Shared Subspace Method, where the obtained subspace
associates the label-information with the feature-information of the original ma-
trices. Our retrieval task was formalized as a problem of enumerating every
formal concept with Top-N evaluation values w.r.t. unexpectedness.

At the moment, we still leave quantitative evaluation of our method. As
the unexpectedness in [14] has been quantitatively evaluated for another movie
dataset according to [15], we can attempt a similar comparison. In addition, it
would be worth verifying actual usefulness of our system through user trials.

We also need to investigate a prediction method of multi-labels. In our current
framework, although the basis of label space is assumed to be a part of the basis
of feature space. In order to further improve quality of multi-label prediction, it
would be required to carefully distinguish two classes of labels, ones which can
be well explained in terms of features and the others. By a correlation analysis
for labels and features, we can define an adequate regularization term in the
objective function for our matrix factorization. This kind of analysis is also very
important in the framework of feature association which identifies reasonable
similarities among features in different data matrices [11].

Moreover, a recommendation system based on query-specific FCA-based bi-
clustering has been proposed in [7]. We need to clarify relationship between the
method and ours.
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Alain Gély1, Miguel Couceiro2, and Amedeo Napoli2
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Abstract. In this paper we study distributive lattices in the framework
of Formal Concept Analysis (FCA). The main motivation comes from
phylogeny where biological derivations and parsimonious trees can be
represented as median graphs. There exists a close connection between
distributive lattices and median graphs. Moreover, FCA provides efficient
algorithms to build concept lattices. However, a concept lattice is not
necessarily distributive and thus it is not necessarily a median graph.
In this paper we investigate possible ways of transforming a concept
lattice into a distributive one, by making use Birkhoff’s representation
of distributive lattices. We detail the operation that transforms a reduced
context into a context of a distributive lattice. This allows us to reuse
the FCA algorithmic machinery to build and to visualize distributive
concept lattices, and then to study the associated median graphs.

1 Context and Motivations

Formal Concept Analysis (FCA) has proved to be an effective tool in data anal-
ysis and knowledge discovery in several application domains [10,14]. Concept
lattices provide a valuable support for several tasks, such as classification, infor-
mation retrieval and pattern recognition. Besides lattices, trees and their exten-
sions [4,5,13] are used in biology, notably, in phylogeny, for modeling inter-species
filiations. In this domain, one of the main problems is to find evolution trees for
representing existing species from accessible DNA fragments. When several trees
are leading to the same inter-species filiations, the preferred ones are the most
“parsimonious”, i.e. the number of modifications such as mutations for example,
is minimal for the considered species. However, several possible parsimonious
trees may exist. Such a situation arises with inverse or parallel mutations, e.g.,
when a gene goes back to a previous state or the same mutation appears for
two non-linked species. This asks for a generic representation of such a family of
trees.

Bandelt [2,3] proposes the notion of median graph to overcome this issue,
since he noticed that a median graph is capable of encoding all parsimonious
trees. A median graph is a connected graph such that for any three vertices
a, b, c, there is exactly one vertex x which lies on a shortest path between each
pair of vertices in ta, b, cu. Alternatively, median graphs can be thought of as a
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generalization distributive lattices [8,15]. However, the extraction of such struc-
tures directly from data remained unaddressed.

Uta Priss [19,20] made a first attempt to use algorithmic machinery of FCA
and the links between distributive lattices and median graphs, to analyze phylo-
genetic trees. However, not every concept lattice is distributive, and thus FCA
alone does not necessarily outputs median graphs. In [20] Uta Priss sketches
an algorithm to convert any lattice into a median graph. The key step is to
transform any lattice into a distributive lattice.

In this article, we propose an algorithm supporting such a transformation
that minimizes the changes introduced to the original lattice. Using the context
of an initial concept lattice as input, the algorithm outputs the context of a
distributive lattice, without necessarily building the lattice. Our approach relies
on Birkhoff’s representation of distributive lattices [6,7]. Moreover, we illustrate
our approach with a generic example that reveals the difficulties of transforming
of a concept lattice into a distributive lattice. We do not settle this issue entirely,
but we propose major steps and an approach towards its solution.

The paper is organized as follows. In Sections 2 and 3 we recall the basic
background and notation as well as some key results on distributive lattices. The
transformation algorithm is presented in Section 4 and we discuss the strengths
and limitations of our approach in Section 5.

2 Definitions and Notations

In this section we recall basic notions and notation needed throughout the paper.
We will mainly adopt the formalism of [14], and we refer the reader to [11,12]
for further background.

2.1 Partially Ordered Sets, Lattices and Homomorphisms

A partially ordered set (or poset for short) is a pair pP,ďq where P is a set
and ď is a partial order on P , that is, a reflexive, antisymmetric and transitive
binary relation on P . A poset pP 1,ď1q is a subposet of pP,ďq if P 1 Ď P and
ď1Ďď. For a subset X Ď P , let Ó X “ ty P P : y ď x for some x P Xu and
Ò X “ ty P P : x ď y for some x P Xu. If X :“ txu, we use the notation Ó x and
Ò x instead of Ó txu and Ò txu, respectively. In this paper, we will only consider
finite posets pP,ďq and, when there is no danger of ambiguity, we will refer to
them by their underlying universes P .

A set X Ď P is a (poset) ideal (resp. filter) if X “Ó X (resp. X “Ò Xq. If
X “Ó x (resp. X “Ò x) for some x P P , then X is said to be a principal ideal
(resp. filter) of P . For x, y P P , the greatest element of Ó xX Ó y (resp. least
element Ò xX Ò y) if it exists, is called the infimum (resp. supremum) of x and y.
A lattice is a poset pL,ďq such that the infimum and the supremum of any pair
x, y P L exist, and they are denoted respectively by x ^ y and x _ y. A subset
X Ď L is a sublattice of L if for every x, y P X we have that x^ y, x_ y P X. As
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for posets, we will only consider finite lattices pL,ďq and we will refer to them
by their underlying universes L.

In this finite setting, posets and lattices can be represented and clearly visu-
alized by their Hasse-diagrams [12]. Also, the notions of infimum and supremum
naturally extend from pairs to any subset of elements of a given lattice L. In this
way, the notions of ^- and _-irreducible elements (that constitute the building
blocks of lattices) can be defined as follows. For x P L, let x˚ “ ŹpÒ xztxuq
and x˚ “ ŽpÓ xztxuq. Then x P L is said to be a ^-irreducible element of L
if x ‰ x˚. Dually, x is said to be a _-irreducible element of L if x ‰ x˚. We
will denote the set of ^-irreducible elements and _-irreducible elements of L
by MpLq and JpLq, respectively. Observe that both MpLq and JpLq are posets
when ordered by ď.

We now recall the notions of poset and lattice homomorphisms.
Let pP,ďq and pP 1,ď1q be two posets. A mapping f : P Ñ P 1 is said to be a
(poset) homomorphism if x ď y implies fpxq ď1 fpyq. In addition, if f : P Ñ P 1 is
injective (one-to-one), then it is called a (poset) embedding. If it is a bijection and
an embedding such that, for every x1, y1 P P 1, x1 ď1 y1 implies f´1px1q ď f´1py1q,
then it is called a (poset) isomorphism.

In the case of lattices, the notions of homomorphism, embedding and iso-
morphism become more stringent. Let pL,^,_q and pL1,^1,_1q be two lattices.
A mapping f : L Ñ L1 is said to be a (lattice) homomorphism if fpx ^ yq “
fpxq ^1 fpyq and fpx_ yq “ fpxq _1 fpyq. In addition, if f : LÑ L1 is injective,
then it is called a (lattice) embedding. If it is a bijection and it is an embedding
such that f´1 is also an embedding, then it is called a (lattice) isomorphism.
When it is clear from the context, we will drop “(poset)” and “(lattice)” and
simply refer to homomorphism, embedding and isomorphism.

It is noteworthy that the image fpLq of a homomorphism f : L Ñ L1 is a
sublattice of L1, and that two isomorphic lattices have the same Hasse diagram.
In particular, two lattices L and L1 are isomorphic if and only if both (1) JpLq
and JpL1q, and (2) MpLq and MpL1q are isomorphic. In the case of distributive
lattices, Birkhoff [7] showed that (1) suffice to guarantee that L and L1 are
isomorphic (pJ,ďq and pM,ďq are isomorphic). The latter result is key ingredient
in Birkhoff’s representation of distributive lattices that we will discuss in Section
3, and that we will use in Section 4 to devise an algorithm to modify any finite
lattice into an “optimal” distributive lattice containing it.

2.2 Formal Concept Analysis

Reduced Contexts, Concepts and Concept Lattices. We denote by C “
pO,A, Iq a formal context where O is a set of objects, A a set of attributes and
I an incidence relation between objects and attributes. In phylogenetic data,
objects are usually species, attributes are mutations, and po, aq P I –or oIa–
when mutation a is spotted in species o.
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Definition 1 (Galois connections). For a set X Ď O, Y Ď A we define:

X 1 “ ty P A | xIy for all x P Xu
Y 1 “ tx P O | xIy for all y P Y u

Then a formal concept is a pair pX,Y q, where X Ď O, Y Ď A and X 1 “ Y
and Y 1 “ X. X is the extent and Y is the intent of the concept. The set of all
formal concepts ordered by inclusion of the extents –dually the intents– denoted
by ď generates the concept lattice of the context C “ pO,A, Iq.

For o P O, γo “ po2, o1q denotes the concept introducing object o. For a P A,
µa “ pa1, a2q denotes the concept introducing attribute a.

A clarified context is a context such that x1 “ y1 implies x “ y for any
element of O and any element of A. Moreover, a clarified context is reduced iff
it contains:

– no vertex x P O such that x1 “ X 1 with X Ď O, x R X
– no vertex x P A such that x1 “ X 1 with X Ď A, x R X

The reduced context is also called a standard context. Note that the standard
context of lattice L is such that O “ JpLq and A “MpLq.

Arrow Relations.

Definition 2. Let us consider a context pO,A, Iq, an object o P O and an at-
tribute a P A, then:

– o Ò a iff po, aq R I and if a1 Ď x1, a1 ­“ x1 then po, xq P I
– o Ó a iff po, aq R I and if o1 Ď x1, o1 ­“ x1 then px, aq P I
– o Øa iff o Ò a and o Ó a

Stated differently, o Ó a iff o1 is maximal among all object intents which do
not contain a. It can be shown that:

o Ó a ô γo P JpLq and γo^ µa “ pγoq˚pwith x˚ “ ŽpÓ xztxuqq
o Ò a ô µa PMpLq and γo_ µa “ pµaq˚pwith x˚ “ ŹpÒ xztxuqq

Arrow relations are related to irreducible elements in JpLq and MpLq. In the
following, we only consider arrow relations in reduced contexts.

An alternative equivalent definition of arrow relations is the following:

Definition 3. Let L be a lattice, j P JpLq and m PMpLq, then:

– j Ò m iff µm P maxpLz Òγjq where maxp.q denotes the maximal elements.
– j Ó m iff γj P minpLz Óµmq where minp.q denotes the minimal elements.
– j Øm iff j Ò m and j Ó m.

C “ pJ,M, I, Ó , Ò q is the reduced context with arrow relations. It can be
represented by a table with (irreducible) objects in lines, (irreducible) attributes
in columns, and in cell pj,mq (intersection of row j and column m):
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– ˆ if j ď m where ď is the partial ordering in the concept lattice,
– Ó if j Ó m,
– Ò if j Ò m,
– Ø if j Ó m and j Ò m,
– otherwise an empty cell.

Fig. 1 shows three examples of reduced contexts with arrow relations C “
pJ,M, I, Ó , Ò q and the corresponding concept lattices. The two first lattices
on the left are respectively named M3 and N5 and they are the smallest non-
distributive lattices. The third lattice on the right is a distributive lattice.

M3

a b c

1 ˆ Ø Ø
2 Ø ˆ Ø
3 Ø Ø ˆ

N5

a b c

1 ˆ Ó Ø
2 Ø ˆ ˆ
3 Ò Ø ˆ

Distributive lattice

a b c d

1 ˆ Ø ˆ ˆ
2 Ø ˆ ˆ ˆ
3 ˆ ˆ Ø
4 ˆ Ø ˆ

Fig. 1. Three lattices and their reduced contexts with arrow relations.

3 Distributive Lattices and Their Representation

A lattice is distributive if ^ and _ are distributive one with respect to the over.
Formally, a lattice L is distributive if for every x, y, z P L, we have that one (or,
equivalently, both) of the following identities holds:

piq x_ py ^ zq “ px_ yq ^ px_ zq, piiq x^ py _ zq “ px^ yq _ px^ zq.
Distributive lattices appear naturally in any classification task or as compu-

tation and semantic models; see, e.g., [11,12,16,17]. This is partially due to the
fact that any distributive lattice can be thought of as a sublattice of a power-set
lattice, i.e., the set PpXq of subsets of a given set X. This result is a corollary
to Birkhoff’s representation of distributive lattices that we will further discuss
in Subsection 3.2.

3.1 Characterization of Distributive Lattice

The distributive property of lattices has been equivalently described in several
ways. We recall a few useful characterizations that we will use in the following
sections of the paper.
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Theorem 1. A lattice L is distributive if and only if one (or, equivalently, all)
of the following conditions hold:

1. px^ yq _ py ^ zq _ pz ^ xq “ px_ yq ^ py _ zq ^ pz _ xq;
2. L does not contain neither N5 nor M3 as sublattice;
3. the reduced context of L with arrow relations contains exactly one double-

arrow Ø in each row and in each column, and no other arrows.

The first characterization establishes a correspondence between distributive
lattices and median algebras. Indeed, a median algebra is a structure pM,mq
where M is a nonempty set and m : M3 ÑM is an operation, called median op-
eration, that satisfies the following conditionsmpa, a, bq “ a andmpmpa, b, cq, d, eq
“ mpa,mpb, c, dq,mpb, c, eqq, for every a, b, c, d, e P M . It is not difficult to see
that if L is distributive, then mpa, b, cq “ pa ^ bq _ pb ^ cq _ pc ^ aq is a me-
dian operation. The connection to median graphs was established by Avann [1]
who showed that every median graph is the Hasse diagram of a median algebra
(thought of as a semilattice). For further background see, e.g., [2].

The second characterization describes distributive lattices in terms of two
forbbiden structures, namely, M3 and N5 (see Fig. 1) that are, up to isomor-
phism, the smallest non distributive lattices. The third characterization is given
in terms of formal contexts and it is also illustrated in Fig. 1: neither M3 nor
N5 are distributive since

– for M3, there are two double arrows by row and column;
– for N5, there is one double arrow by row and column, but additional simple

arrows.

3.2 Distributive Lattices and Ideal Lattices

Let pP,ďq be a poset and consider the set OpP q of ideals of P , i.e.,

OpP q “ t
ď

xPX
Ó x | X Ď P u.

It is well-known that for every poset P , the set OpP q ordered by inclusion is a
distributive lattice, called ideal lattice of P , and that two posets P and P 1 are iso-
morphic if and only if OpP q and OpP 1q are isomorphic as lattices. Furthermore,
the poset of _-irreducible elements of OpP q is

JpOpP qq “ tÓ x | x P P u
and it is (order) isomorphic to P .

Dually, we saw in Subsection 2.1 that for any lattice L the set JpLq of _-
irreducible elements of L is a poset ordered by inclusion, and that if two lattices
L and L1 are isomorphic, then JpLq and JpL1q are also isomorphic (as posets).
Moreover, for any lattice L the setOpJpLqq of ordered ideals of JpLq is a distribu-
tive lattice that contains an isomorphic copy of L as a subposet. In particular,
if L is isomorphic to OpJpLqq, then L must be distributive. The representation
theorem of Birkhoff [6] states that the converse is true.
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Birkhoff’s Representation Theorem 1 Let L be a (finite) distributive lat-
tice and JpLq. Then the mapping xÑÓ xXJpLq is a (lattice) isomorphism from
L to OpJpLqq.
As immediate consequences we have that every (finite) distributive lattice can
be thought of as a sublattice of a powerset lattice or, equivalently, as a lattice
of ideals of a poset. Figure 2 illustrates the latter assertion: on the left is a
poset P , and on the right is the lattice of ideals of P . For an arbitrary lattice L,

Fig. 2. Illustration of Birkhoff’s Representation Theorem.

not necessarily distributive, there may be several lattices such that their poset
of _-irreducible elements are isomorphic but only one of them is a distributive
lattice [9,18]. Our goal is to make use of the previous results to present an
algorithmic approach that receives a lattice L as input, and outputs an “optimal”
distributive lattice Ld such that pJpLq,ďq is isomorphic topJpLdq,ďdq. Here, by
“optimal” it should be understood “with the least number of modifications”
(notably, insertions).

4 Proposal for Building a Distributive Lattice

From any lattice L, we want to obtain a distributive one Ld. Moreover, we want
Ld to be “similar” to L. In this work, Ld is considered as similar to L if the
posets of _-irreducible elements of Ld and of L are isomorphic. In this case, L
can be embedded in Ld (Ld is a _-completion of L).

With this definition of “similar” (which can dually be applied to^-irreducible
elements), we can use Birkhoff Representation Theorem to compute Ld or its
reduced context.

The main idea of algorithm 1 is to compute the context of Ld from the reduced
context of L as input. Our approach relies on the underlying poset pJ,ďq which
is used to compute Md.

Property 1. Algorithm 1 outputs the reduced context of the ideal lattice of JpLq.
Proof. By construction, there is only one double-arrow by row and by column,
and no other arrows. It follows that Cd is the context of a distributive lattice
As discussed in section 2.1, this lattice is the ideal poset of pJpLq,ďq. It follows
that pJpLq,ďq and pJpLdq,ďdq are isomorphic. [\
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Algorithm 1: Construction of context of distributive lattice.

Data: Reduced context CpJ,M, Iq
Result: Reduced context CdpJ,Md, Idq of pOpJq,Ď,X,Yq
Md ÐH
Id ÐH
foreach j P J do

Òj ÐH
foreach i P J do

if j1 Ď i1 then Òj ÐÒj Y i

Md ÐMd Ymj // add a ^-irreducible element mj such that j Ømj

X Ð Jz Òj // elements of poset J which are not greater than j
foreach x P X do

Id Ð Id Y px,mjq

To illustrate the algorithm, we use N5 context as input. At the beginning of
the algorithm, the context Cd has |J | rows but zero columns. Each step of the
external loop computes mj , a new ^-irreducible element of Cd such that j Ø
mj .

Step 1. Computation of m1 using Jz Ò 1. The algorithm computes the _-
representation of m1, the ^-irreducible element such that 1 Ø m1. At the end
of this step of the loop, Cd has a unique column which correspond to m1.

m1

1
2 ˆ
3 ˆ

Step 2. Computation of m2 using Jz Ò 2. The algorithm computes the _-
representation of m2, the ^-irreducible element such that 2 Ø m2. At the end
of this step of the loop, Cd has two columns which correspond to m1 and to a
newly computed element m2.

m1 m2

1 ˆ
2 ˆ
3 ˆ

Step 3. Computation of m3 using Jz Ò 3. The algorithm computes the _-
representation of m3, the ^-irreducible element such that 3 Ø m3. At the end
of this step of the loop, Cd has three columns which correspond to m1, m2 and
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to a newly computed element m3.

m1 m2 m3

1 ˆ ˆ
2 ˆ ˆ
3 ˆ

The whole context Cd for Ld is now computed. By construction, the only
arrow relations are double arrows between j and mj Below, Ld is drawn with
black circles for concepts which were present in L and white circles for new
concepts.

m1 m2 m3

1 Ø ˆ ˆ
2 ˆ Ø ˆ
3 ˆ Ø

5 Discussion and Conclusion

Motivated by the work of Priss [20] on the use of FCA on phylogenetic problems,
we have proposed an algorithmic approach to compute the reduced context of a
distributive lattice Ld from the reduced context of any lattice L, that ensures an
order embedding from L into Ld that preserves ^. So, Ld can be considerated
“not too far” from L and thus suitable for applications in phylogeny. In the
remainder of this final section, we discuss some features of this algorithm.

First, we discuss an interpretation of the behavior of the algorithm for phylo-
genetic data. The algorithm computes ^-irreducible elements of Ld without any
consideration for ^-irreducible elements of L but, as discussed in Subsection 3.2,
this is not a problem. Now, for real data, two cases may appear:

1. µmj P L: in this case, we can use the initial label m of the object (this label
may represent a particular gene mutation);

2. µmj R L: this case suggests a gene mutation that is not spotted in the data,
but that is necessary to provide a parsimonious tree.

Similarly, it is possible that m PMpLq but m RMpLdq but in any case, µm exists
in L and Ld. This is the case when a mutation m is regarded as the infimum of
other mutations.

Second, we propose an algorithm to build the context of a distributive lattice
from any context. However, it is only a partial solution to the problem considered
in [20]:

“an algorithm for converting a concept lattice [into a median graph]
consists of omitting the bottom node and then checking every principal
filter for distributivity and turning it into a distributive lattice if it is
not already one.”
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In the following, we discuss the whole process presented in [20]. We have
proposed an algorithmic approach to “turning it into a distributive lattice if it
is not already one”. However, there is still some work to do as the suggestion in
[20] does provide suitable solutions. This is illustrated by the example given in
Figure 3.

a b c d e

1 ˆ ˆ ˆ
2 ˆ ˆ ˆ
3 ˆ ˆ
4 ˆ ˆ
5 ˆ
6 ˆ

Fig. 3. Problematic context and associated concept lattice

Indeed, if we were to follow the steps suggested by Priss [20] on this example,
the procedure would not provide a correct solution (i.e., a distributive lattice for
principal filters). Consider a local approach on Ò 1 and Ò 2. The first step is to
compute the reduced context of Ò 1 (since the example is symmetric for 1 and
2, we only give details for 1). The reduced context C1 of L1 “Ò 1 can be built
from CpJ,M, Iq by first observing that 11 “ ta, b, du, which entails the following
context:

a b d

1 ˆ ˆ ˆ
2 ˆ
3 ˆ ˆ
4
5 ˆ
6

and that reduces to:

a b d

2 ˆ
3 ˆ ˆ
5 ˆ

Algorithm 1 then returns the context C1
d of a distributive lattice; similarly,

Algorithm 1 returns context C2
d of L2 “Ò2.

C1
d m2 m3 m5

2 ˆ ˆ
3 ˆ ˆ
5 ˆ

C2
d m1 m4 m6

1 ˆ ˆ
4 ˆ ˆ
6 ˆ

Moreover, in the whole lattice, every m P M1 is greater than 1 and every
m PM2 is greater than 2. Hence we obtain the left context for the whole lattice
and the reduced context on the right:
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m2 m3 m5 m1 m4 m6

2 ˆ ˆ ˆ ˆ ˆ
3 ˆ ˆ
5 ˆ
1 ˆ ˆ ˆ ˆ ˆ
4 ˆ ˆ
6 ˆ

m2 m5 m1 m6

2 ˆ ˆ ˆ
3 ˆ ˆ
5 ˆ
1 ˆ ˆ ˆ
4 ˆ ˆ
6 ˆ

The resulting lattice is presented in Figure 4.a; not every principal filter is
distributive. The problem comes from the fact that the modified parts of the
lattice belong to intersection of Ò 1 and Ò 2. The new added elements in a filter
may belong to other filters, and this may “break” the consistency achieved in
the other filters.

Now we applied this procedure in parallel for Ò1 and Ò2, and someone could
argue that it should be iterated filter by filter until a fixed point is reached.
Nevertheless, an optimal solution cannot be found through the general procedure
suggested by Priss [20], since all filters must be considered simultaneously. In
the present case, there exists an optimal solution with only one new concept.
This solution is given in Figure 4.b

paq pbq

Fig. 4. paq Solution obtained after a local approach and pbq optimal solution.

The difficulty of simultaneously considering all the filters should be studied
and solved to deal with phylogenetic data. This entails to the two following open
problems.

Problem 1 (Lattice version). Given a lattice L, propose an efficient algorithm to
output a lattice Ld such that:

– for each atom x of Ld, Òx is a distributive lattice,
– there is an order embedding from L to Ld, and
– |Ld| ´ |L| is minimal.

Problem 2 (Context version). Given the reduced context of a lattice L, propose
an efficient algorithm to output the reduced context of a lattice Ld such that:

– for each atom x of Ld, Òx is a distributive lattice,
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– there is an order embedding from L to Ld, and
– |Ld| ´ |L| is minimal.

We are currently working on these two variations of the problem. The ob-
jective is to establish an operational bridge between FCA (concept lattices) and
distributive lattices to allow the use of FCA algorithms in phylogeny.
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Abstract. In this paper we present a new technique for the analysis of
data tables by means of Formal Independence Analysis (FIA). This is
an analogue of Formal Concept Analysis for the study of independence
relations in data, instead of hierarchical relations. A FIA of a context
produces, when possible, its block diagonalization by detecting pairs of
sets of objects and attributes that are not mutually incident, or tomoi,
that partition the context. In this paper we combine this technique with
the exploration of contexts with entries in a semifield to find independent
sets in contingency matrices. Specifically, we apply it to a number of
confusion matrices issued from cognitive experiments to find evidences
for the hypothesis of perceptual channels.

1 Introduction and Motivation

In this paper we derive a technique for data analysis from the recently introduced
Formal Independence Analysis, (FIA) [11]. This is an analysis technique for
formal contexts based on the description of certain pairs of subsets of objects and
attributes called tomoi, e.g. divisions, which are unrelated through the incidence.
We set out to demonstrate how these tomoi allow us to dissect the structure and
information of certain matrices.

Independent Perceptual Channels. Miller and Nicely [4] posited that
for certain human perceptual tasks—e.g. consonant perception—the underlying
structure of confusion matrices provide evidence of the existence of perceptual
channels associated with specific perceptual features. This work is aimed at pro-
viding a technique to make such channels evident with the goals and techniques
of Lattice Theory.
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Specifically, consider the confusion matrix Cij describing the results of an
iterated classification experiment “when presented with stimulus i, and the (hu-
man) classifier answered response j.” If the hypothesis of independent channels
were true, we would expect this confusion matrix to be reordered by specific per-
mutations of its rows and columns into a block diagonal form, more specifically,
a squared block diagonal form. In this block-diagonal form, each block would
describe the confusions within a perceptual channel, while confusions outside
the channel would not be observed.

Reading Guide. In this paper we will use the recently developed FIA (Sec-
tion 2.1) to obtain a block-diagonal form for confusion matrices, that leads to the
independent virtual channel hypothesis of Miller and Nicely. This result actually
stems from the consideration of a disjoint union of subcontexts decomposition
technique already available from [2] that we relate to the notion of tomos and
boolean tomoi lattice (Section 2.2). Our main results are the theoretical tech-
nique (Section 3.1) and the actual analyses carried out in the Miller and Nicely
data (Section 3.2). We also provide a Discussion, a look into Further Work and
some Conclusions.

2 Methods

2.1 Formal Independence Analysis

FIA was defined to complement the analysis of the information in formal contexts
carried out by FCA, originally in terms of the hierarchical relation of formal
concepts in terms of the inclusion between extents and intents. Instead, FIA
targets the relation of independence between sets of objects and attributes [11],
therefore called tomoi3 The objects in the “extent” of a formal tomoi have no
relation with the attributes of the “intent” of the tomoi.

Theorem 1 (Basic theorem of formal independence analysis).

1. The context analysis phase: Given a formal context (G,M, I),

(a) The operators ·∼ : 2G → 2M and ·∼ : 2M → 2G

α∼ = M r
⋃

g∈α
I(g, ·) = {m ∈M | g \I m for all g ∈ α} (1)

β∼ = Gr
⋃

m∈β
I(·,m) = {g ∈ G | g \I m for all m ∈ β} (2)

form a right-Galois connection (·∼, ·∼) : (2G,⊆)↼⇀(2M ,⊆) whose formal
tomoi are the pairs (α, β) such that α∼ = β and α = β∼.

3 From the Greek “tomos-tomoi”, division.
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(b) The set of formal tomoi A(G,M, I) with the relation

(α1, β1) ≤ (α2, β2) iff α1 ⊇ α2 iff β1 ⊆ β2

is a complete lattice, which is called the tomoi lattice of (G,M, I) and
denoted A(G,M, I), where infima and suprema are given by:

∧

t∈T
(αt, βt) =

(⋃

t∈T
αt,
( ⋂

t∈T
βt

)
∼

∼
) ∨

t∈T
(αt, βt) =

(( ⋂

t∈T
αt

)∼
∼
,
⋃

t∈T
βt

)

(c) The mappings γ : G→ A(G,M, I) and µ : M → A(G,M, I)

g 7→ γ(g) = ({g}∼∼, {g}
∼

) m 7→ µ(m) = ({m}∼, {m}∼
∼

)

are such that γ(G) is infimum-dense in A(G,M, I) , µ(M) is supremum-
dense in A(G,M, I).

2. The context synthesis phase: Given a complete lattice L = 〈L,≤〉
(a) L is isomorphic to4 A(G,M, I) if and only if there are mappings γ : G→

L and µ : M → L such that

– γ(G) is infimum-dense in L , µ(M) is supremum-dense in L, and
– g I m is equivalent to γ(g) 6≥ µ(m) for all g ∈ G and all m ∈M .

(b) In particular, L ∼= A(L,L, 6≥) and, if L is finite, L ∼= A(M(L), J(L), 6≥)
where M(L) and J(L) are the sets of meet- and join-irreducibles, respec-
tively, of L.

It is already known that the lattices of formal tomoi and concepts are deeply
related [13,7]. Recall that the contrary context to any (G,M, I) is the context
(M,G, Icd), where the incidence has been transposed and inverted.

Proposition 1. The formal lattice of the contrary formal context is isomorphic
to the tomoi lattice:

A(G,M, I) ∼= B(M,G, Icd)

2.2 Disjoint Context Sum and Adjoined Lattices

To set this scenario in a Formal Concept Analysis setting, recall from [2, Def-
inition 30] that the disjoint sum of two contexts K1 = (G1,M1, I1) and K2 =

(G2,M2, I2), with disjoint object and attribute sets is the context K1

�∪K2 =
(G1 ∪G2,M1 ∪M2, I1 ∪ I2), and that the concept lattice of the total context is
the horizontal sum of the two concept lattices, that is, a union of the two lattices
which only overlap in the top and bottom elements

K = K1

�∪K2 ⇐⇒ B(K1

�∪K2) = B(K1)
�∪B(K2).

4 Read can be built as.
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This can be straightforwardly generalized to a finite number n of lattices,

K =
�⋃n

i=1
Ki ⇐⇒ B

( �⋃n

i=1
Ki

)
=

�⋃n

i=1
B(Ki). (3)

This is what we call in this paper an (explicit) block diagonal form for the
context, which results in a concept lattice of adjoined sublattices.

For this latter generalization, notice that each extent of K, except for the
extent G = ∪iGi, is entirely contained in one of the sets Gi, and concept-lattice
dually for intents. So it makes sense to say that two non-extreme concepts are
orthogonal is they belong to different adjoined sublattices5.

The relationship between tomoi lattices and block decompositions is provided
by the following proposition.

Proposition 2. If A(G,M, I) ∼= 2n then the context (G,M, I) has an explicit
block diagonal form.

Proof (Sketch). By Theorem 1 (item 2.b) the context (G,M, I) can be trans-
formed into another one whose object-concepts are the meet-irreducible elements
and whose attribute-concepts are the join-irreducible elements and, hence, be-
cause of the isomorphism with 2n, they are the co-atoms and the atoms, re-
spectively. Moreover, they are complementary pairs of one object-tomos and one
attribute-tomos.

As consequence, it is possible to reorganize the tabular expression of (G,M, I)
in such a way that we obtain a block diagonal form. ut

3 Results

3.1 Theoretical Analysis.

The purpose of proving the existence of independent channels for different per-
cepts can be achieved by reducing a confusion matrix to a block diagonal form.
But, confusion matrices are not binary incidences and may not be subject to a
simple process of block diagonalization. Instead, we may look for an approximate
block-diagonal block, that retains the main structure of the confusions.

We can motivate this approximation in the following way:

– A perfect classifier would obtain a diagonal matrix of counts. This has been
proven in terms of information-theoretic arguments in [9], for instance.

– But in most cases what we can hope for is a diagonally dominant matrix,
that is not even symmetrical. For instance, the heatmap of the symmetrized
confusion matrix for the M&N data for −6dB, to the left of Fig. 1, shows
such a shape. Even its symmetrical part of CS has a corresponding structure
that is far from being block-diagonal, e.g. center of Fig. 1.

5 The basis for this definition is, of course, the embedding of extents and intents as
vectors in semimodules over an idempotent semifield which allows us to define a dot
product between extents, resp. intents. [10]. Note that in idempotent semimodules,
which are zero-sum free, null dot-products can only occur for vectors of disjoint
support, and this is precisely the case at hand.
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Fig. 1: (Color online) Heatmaps of the count confusion matrix in M&N for a
SNR of −6dB. Left: count matrix; C center: symmetrized count matrix CS ;
right: antisymmetrical residue CA.

– Using structural analysis from an adequately transformed matrixM = f(CA)
we could use the paradigm of Landscapes-of-Knowledge (LoK) [14] extended
to multi-valued contexts [8] to explore the sequence of boolean incidences
I(ϕ)ij = Mij Q ϕ where ϕ ranges in the values of the original matrix:
• Choosing I(ϕ)ij = Mij ≥ ϕ uses the min-plus structural analysis, while
• Choosing I(ϕ)ij = Mij ≤ ϕ uses the max-plus structural analysis.

– The criterion for finding a “correct” value for ϕ is to ensure that the I(ϕ)
has a tomoi lattice that is boolean. A proxy criterion for this is to select and
inspect only those ϕ whose number of formal tomoi is a power of 2. Note
that after obtaining the appropriate ϕ by Proposition 2 we would have the
block-decomposition.

In the following section, we check the feasibility of this scheme on the Miller
and Nicely data.

3.2 FIA Exploration of Confusion Matrices

Data Description. In this paper we will use the data from the Miller and
Nicely study to show examples of phenomena and test the proposed data anal-
ysis procedures. These are the confusion data of a consonant perception task,
and we will refer to it as the M&N data. Specifically they are six different con-
fusion matrices of 16 entries for different Signal-to-Noise Ratios (SNR) in dB of
{−18,−12,−6, 0, 6, 12} obtained in a (human) speech recognition task for the
consonants listed in Table 1. The stimuli where balanced, but the responses may
be unbalanced due to non-symmetrical confusion effects.

Data Preprocessing. Due to the symmetry inherent in the confusion task,
since the category of the responses was the same as that of the stimuli, we
extracted the symmetric component of each confusion matrix. This was done
by obtaining from each matrix C its symmetric component CS = (C + Ct)/2.
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Table 1: Ordering of the consonants used in the confusion matrices analyzed
(from [4]).
symbol p , t , k , f , th , s , sh , b , d , g , v , dh , z , zh , m , n

phone /p/, /t/, /k/, /f/, /θ /, /s/, /
∫

/, /b/, /d/, /g/, /v/, /ð/, /z/, /zh/, /m/, /n/

The antisymmetric component CA = (C − Ct)/2 can then be interpreted as a
residue. For the M&N confusion matrix at −6dB these two components can be
seen in Fig. 1.

The data were preprocessed to obtain both the Pointwise Mutual Information
(MI) and the Weighted Pointwise Mutual information (WPMI) as shown in
Fig. 2. Although prior work suggested that WPMI lends itself to more clear

Fig. 2: (Color online) Heatmaps of the confusion matrix in M&N for a SNR
of −6dB for different preprocessing. Left: pointwise mutual information. Right:
weighted pointwise mutual information.

analyses, for the purpose of finding independent blocks in the matrix, we found—
on using both types of data preprocessing—MI to retain more details about
confusions that define the blocks, e.g. between elements that share (unknown)
features motivating the confusion, for instance the voiceless fricatives /s/ vs.
/
∫

/.

Data Analysis. We carried out min-plus exploratory analysis in the MI-
transformed confusion matrix above by thresholding for each ϕ in increasing
order and generated a sequence of K = 105 (binary) formal contexts K(ϕk) =
(G,M, I(ϕk)), k ∈ [1, . . .K].

For each of these contexts, we calculated the number of formal tomoi for each
thresholded I(ϕ) by actually working out the formal concepts of the contrary
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context K(ϕ)cd = (M,G, \It). We do not explore at ϕ = −∞ which entails a
trivial full-incidence and a count of one tomoi.

The graph of these counts in base-2 logarithm, shown in Fig. 3.a, allows us
to define three regions:

(a) Tomoi count of I(ϕ) vs. ϕ(dB)

(b) I(ϕ) at ϕ = −1.299010 (c) I(ϕ) at ϕ = 1.539160

Fig. 3: (Color online) Number of formal tomoi vs ϕ for I(ϕ) and heatmaps for
two highlighted ϕ.
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– An initial segment where the threshold is too lax and we see essentially
few blocks and a number of “noise” tomoi, where our assumption, viz. that
there are virtual channels, does not hold.
In the example being analyzed, this is the range (−5.2, 1.53), to the left of the
leftmost vertical line in Fig. 3.a . To ascertain the shapes of the thresholded
we present an instance for where ϕ ≈ −1.23 and |K(ϕ)| = 30 focused on by
the leftmost circle. In the heatmap of Fig. 3.b we can see and inkling of three
different blocks, but since they are not complete, a number of “noisy” tomoi
appear, making the tomoi lattice drift away from 23. Figure 4.a shows this
non-boolean tomoi lattice whose incidence is that of Fig. 3.b

– A middle segment where we start seeing many blocks, and consequently
the number of tomoi |A(G,M, I(ϕ))| falls exactly into one of the powers of
2, where our assumption holds.
In the example, this is ϕ ∈ [1.53, 2.07] between the vertical lines in Fig. 3.a
comprising the ramp where the cardinalities range from 29 to 214 tomoi.
This is the case, for instance, of ϕ ≈ −1.53, |K(ϕ)| = 29, signaled as the
rightmost red circle. We can see the 9-block incidence in Fig. 3.c, while
Fig. 4.b shows the boolean lattice K(ϕ) ∼= 29. For reference, the (average)
mutual information for this matrix, MI−6dB = 1.80 falls within this range,
and would generate the tomoi lattice isomorphic to 210.

– A final segment where the threshold is too stringent and we no longer see
a block diagonal form.
This is the least interesting zone for us. In the example it appears as a
descending slope in the range ϕ ∈ (2.07, 3.61) of Fig. 3.a.

We checked whether this behavior was analogous for all confusion matrices
by analyzing the rest of the matrices at different SNR. The following are the
main trends of analysis:

– We could only obtain boolean tomoi lattices considering all stimuli for those
confusion matrices with SNR of {18, 12, 6, 0,−6}. The matrices at SNR ∈
{−12,−18} were too noisy and some elements in the diagonal were less stable
than elements off the diagonal, hence they disappeared on early exploration.

– In all of the instances where in some range of MI values the exploration
procedure obtained boolean tomoi lattices, the average MI for the whole
matrix, that is in the standard definition of mutual information, actually
belonged in the range where the hypothesis held. Most of the times, this MI
was close to the value for values of ϕ that obtained the boolean tomoi lattice
of highest cardinality.

– The highest SNR in the confusion matrix being analyzed, the higher num-
ber of blocks in I(ϕ). This is congruent with the supposition that high SNR
situations allow us to distinguish individual phones better and it is there-
fore more difficult to obtain evidence of the perceptual channels through
confusions.

Extracting Perceptual Channels. The tomoi provide the basis for obtaining
the perceptual channels on top of boolean tomoi lattices, since for every object-
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tomoi, a meet-irreducible, its complement is an attribute tomoi, hence a join-
irreducible. By the properties of complementary tomoi, the crossed extents and
intents, define the blocks in the block diagonalization.

To see this, consider Table 2 of object-tomoi extents and their complementary
tomoi intents—the attribute tomoi—to be used to build the block-diagonal form
of (3). We see how, modulo a permutation, they constitute a refinement of the
perceptual channels that Miller and Nicely proposed [4].

Table 2: Paired table of meet- and join-irreducibles of K(ϕ) in Fig. 4.b .
Object and attribute subsets object-tomoi extent complementary attribute-tomoi intent

(G1,M1) {p, t, k} {p, t, k}
(G2,M2) {f, θ} {f, θ}
(G3,M3) {s} {s}
(G4,M4) {

∫
} {

∫
}

(G5,M5) {b} {b}
(G6,M6) {d, g} {d, g}
(G7,M7) {v, ð} {v, ð}
(G8,M8) {z, zh} {z, zh}
(G9,M9) {m,n} {m,n}

Discussion and Further Work. Note that the problem we address in this
paper was already approached in [12], but not solved satisfactorily, and we believe
FIA provides a principled approach to the study of independent blocks within
matrices.

In fact, FIA seems to detect much finer perceptual channels than the origi-
nal paper suggests, perhaps because of the granularity of the perceptual features
used there (see below). In order to obtain a rougher partition of phones to sup-
port Miller and Nicely’s hypothesis, we have tried to analyze a balanced mixture
of all the confusion matrices. But FIA has proven too strong for this unrealistic
type of noise: the absence of confusions at 12dB dominates the behavior of the
mixture, and the confusions from those behaviors at −18dB and −12dB are lost.
Recall that it is precisely from the confusions where we obtain the evidence for
the perceptual channels, so clearly a more nuanced approach to such mixture
would be needed.

Although we have provided a data-induced procedure to obtain perceptual
channels from confusion matrices, this is only a first step in actually obtaining the
experimental channels. In particular, we have not investigated justifying those
channels in terms of perceptual characteristics. While Miller and Nicely pro-
posed an encoding of phones based on traditional categorical phonetic features,
modern studies favor the consideration of numeric features. In our opinion this
necessarily entails considering idempotent semimodule models of such spaces [6]
and would lead to higher-value hypotheses. This is left for future work.
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By no means is ours the only attempt at block-diagonalizing matrices over
idempotent semifields. In fact, such process is important for the calculation of the
Moore-Penrose inverse of a matrix over an idempotent semifield [5]. The main
difference with out work is that we are trying to approximate the block-diagonal
form in the presence of an implicit noise.

Yet a more general version of the problem is that of Cell Formation (CF)
in Group Technology, in the field of Manufacturing [1], because it involves the
block diagonalization of rectangular matrices. FIA is not restricted to squared
matrices, but our application and interpretation indeed are because of the fact
that confusion matrices are usually square. CF therefore opens up as an open
research and application avenue for FIA.

Finally, further work is necessary to ascertain the relationship of lattices of
formal tomoi to lattices of formal concepts, as well as to find out whether these
are the only information lenses available for formal contexts, or how to measure
the “quality” of the tomoi, in an effort similar to that shown for triadic analysis
and triclustering in [3]. Our next main aim, though, is to incorporate these
techniques in the over-arching exploratory data analysis framework first laid out
in full in [8].

4 Conclusions

We have introduced a new technique to analyze data tables based on the newly
proposed Formal Independence Analysis. The purpose of the technique is to ob-
tain tomoi,—pairs of sets of objects and attributes unrelated through an incident
relation— and their complements in the lattice of tomoi, which define as many
partitions of the sets of objects and attributes. These tomoi will then be used to
define a block-diagonal form for the incidence.

We apply the technique to the diagonally-dominant incidences of confusion
matrices. By a process of exploration we select special thresholds that obtain
boolean tomoi lattices. In these lattices we obtain the meet-irreducible object-
tomoi and their complements, the join-irreducible attribute-tomoi, that define
diagonal blocks on the looked-for incidence.

These diagonal blocks can be interpreted as virtual channels that transmit
different types of information in the spirit of some classical perceptual experi-
ments, e.g. Miller and Nicely’s.
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(a) Tomoi lattice for ϕ = −1.299010

(b) Tomoi lattice for ϕ = 1.539160

Fig. 4: (Color online) Tomoi lattices for the two incidences of Fig. 3
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Abstract. We present variant of simplification logic for reasoning with
if-then dependencies that arise in formal concept analysis of data with
graded attributes. The dependencies and the proposed logic are parame-
terized by systems of isotone Galois connections which allows us to han-
dle a large family of possible interpretations of data dependencies. We
describe semantics of the rules, axiomatic system of the logic, and prove
its soundness and completeness.
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1 Introduction and Problem Setting

In this paper, we contribute to the area of inference systems that emerge in for-
mal concept analysis [10] of data with graded attributes. By a graded attribute,
sometimes called a fuzzy attribute, we mean an attribute that may apply to an
object to degrees. Needless to say, there are basically two options to treat such
attributes: Either by binary scaling and exploiting the existing methods in FCA
or by providing a suitable formalization of structures of degrees and developing
FCA considering such structures in order to include “graded attributes” as fun-
damental notions. In this paper, we use the “approach by generalization” and
explore general inference systems related to graded attribute implications, i.e.,
if-then formulas describing dependencies between graded attributes.

1.1 Early Approaches

The first approach to FCA that contained results on graded attribute implications
was introduced by Silke Polandt in her somewhat unappreciated book [19]. The
approach is based on residuated lattices [28] considered as basic structures of truth
degrees [11,13] and introduces attribute implications as if-then formulas A⇒ B,
where A and B are graded collections of attributes (fuzzy sets of attributes), i.e.,
technically both A and B are maps A : Y → L and B : Y → L, where Y is a
set of attributes and L is a set of utilized degrees. The interpretation of A ⇒ B
in a given formal context with graded attributes is defined in terms of a graded
subsethood.

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 129–140,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
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The role of the graded subsethood in [19] as well as in the later approaches is
crucial, so let us clarify what we mean by that. The classic subsethood (or inclu-
sion) can be seen as a binary relation on the set of all subsets of a given universe,
e.g., the set of all attributes. When one thinks of a subsethood in presence of
graded attributes, it appears almost immediately that there seem to be multiple
reasonable choices for that. For instance, for maps A and B as above, we might
say that “B is fully included in A” whenever B(y) ≤ A(y) for each attribute
y ∈ Y , where ≤ is a partial order on the set of all degrees in L. As such, the full
inclusion is a classic binary relation on the set of all graded sets in the universe
Y , i.e., for each A,B, either B is fully included in A or not.

However straightforward, the full inclusion may be regarded as not natural by
some because it does not reflect closeness of degrees. For instance, when B(y) ≤
A(y) for all y except for some z ∈ Y for which we have B(z) = 0.63 and A(y) =
0.62 (when a real unit interval is used as the scale of truth degrees), then B is not
fully included in A, however, most observers would regard B to be almost fully a
subset of A. This issue can be resolved by introducing a graded subsethood. While
there are many approaches to define a graded subsethood, [19] and later works
use the one introduced by Goguen [11] which is based on residuated implication.
Using the notation of [2], a degree S(A,M) to which A is a subset of M (see [2,
p. 82]) is defined by

S(A,M) =
∧
y∈Y

(
A(y)→M(y)

)
, (1)

where A : Y → L, M : Y → L, → is residuum (a truth function of graded/fuzzy
implication), i.e., S(A,M) is the infimum of degrees A(y)→ M(y) for all y ∈ Y .
Since S(A,M) is a general degree from L, a high degree S(A,M) can naturally be
interpreted so that “A is almost included in M .” Interestingly, the two notions of
subsethood are related in the following sense: “A is fully included in M” if and
only iff S(A,M) = 1 (with 1 being the highest degree in L).

Using the graded subsethood (and the notation of [2,13]), the initial approach
to attribute implications [19] defined a degree to which A⇒ B holds for an object
x ∈ X by

||A⇒ B||Ix = S(A, Ix)→ S(B, Ix), (2)

where Ix : Y → L represents graded attributes of the object x ∈ X (i.e., Ix(y)
is a “degree to which object x has the attribute y.”) One can immediately see
that (2) is indeed a proper generalization of the classic notion of A ⇒ B (where
A,B ⊆ Y ) being true in Ix ⊆ Y . By a straightforward extension of the notion, we
can introduce a degree ||A ⇒ B||〈X,Y,I〉 to which a graded attribute implication
A⇒ B is true in a context 〈X,Y, I〉 with graded attributes:

||A⇒ B||〈X,Y,I〉 =
∧
x∈X ||A⇒ B||Ix .

In this setting, Polandt [19] investigated several important areas including char-
acterization of completeness in data and similarity issues.
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1.2 Approaches Using Hedges

The approach by Pollandt is sound but it turned out it lacks a certain level of
generality that can be found in the approach using hedges which initally started
by [3], cf. also [6,7] for comprehensive description. The approach uses a linguistic
hedge [29] as an additional parameter that influences the interpretation of graded
attribute implications and related notions from FCA [5]. Technically, instead of
considering (2), one considers ||A⇒ B||∗Ix defined by

||A⇒ B||∗Ix = S(A, Ix)∗ → S(B, Ix), (3)

where ∗ is an idempotent truth-stressing linguistic hedge [14]. By letting ∗ being
the identity map on L, (3) collapses into the Pollandt-style definition (2). The
interesting point about this particular general approach is that for other choices
of hedges, we obtain other interesting interpretations of graded dependencies. For
instance, when ∗ is the so-called globalization [22], then (3) becomes

||A⇒ B||∗Ix =

{
1, if S(A, Ix) < 1,
S(B, Ix), otherwise.

(4)

In particular, ||A ⇒ B||∗Ix = 1 iff S(A, Ix) = 1 (i.e., A is fully contained in Ix)
implies S(B, Ix) = 1 (i.e., B is fully contained in Ix). In general, (2) and (4)
are different and coincide only if the scale of degrees is a two-valued Boolean
algebra. Therefore, the approach by hedges can be seen as a generalization that
encompasses interpretation of graded if-then rules based on both the graded and
full inclusions and these two borderline cases result by different choices of hedges.
This is an important aspect from users’ point of view.

From the theoretical point of view, the generalization by hedges brought new
insights into the properties of several important notions depending on the choice of
a hedge. For instance, minimal bases and pseudo-intents in the general setting [3,7]
have almost the exact same characterization as in the classic case [12] when the
hedge is globalization which it is not the case for general hedges where several
incomparable systems of pseudo-intents may exist for a single dataset, see [24,25]
for details.

1.3 Parameterizations by Isotone Galois Connections

The present paper is closely related to general methods of parameterizing the
semantics of graded attribute implications proposed in [26]. Such parameteriza-
tions subsume the paramaterizations by hedges as well as other non-trivial alter-
native semantics of attribute implications. It may be motivated by two funda-
mental observations on properties of graded attribute implications paramaterized
by hedges [6,7]. First, we have [6, Theorem 3]

||A⇒ B||∗Ix =
∨{

c ∈ L; ||A⇒ c⊗B||∗Ix = 1
}
, (5)

where c⊗B denotes a map from Y to L such that (c⊗B)(y) = c⊗B(y), where ⊗
is the multiplication adjoint to → appearing in (1). Put in words, (5) shows that
the degrees to which graded attribute implications are true can be expressed just
by focusing on implications that are fully true, i.e., true to degree 1.
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Second, we have ||A ⇒ B||∗Ix = 1 (i.e., A ⇒ B is fully true in Ix) iff for any
truth degree c ∈ L, it holds that [6, Lemma 2]

S(c∗⊗A, Ix) = 1 implies S(c∗⊗B, Ix) = 1. (6)

By a slight abuse of notation and denoting the full inclusion by ⊆, the previous
condition can be restated as follows:

c∗⊗A ⊆ Ix implies c∗⊗B ⊆ Ix. (7)

Therefore, one may introduce a general interpretation of graded attribute impli-
cations A ⇒ B by defining A ⇒ B true in Ix whenever the following condition
holds: For any f ∈ S, it holds that f(A) ⊆ Ix implies f(B) ⊆ Ix. In order to
obtain a formalization which is sufficiently strong, [26] shows that it is sufficient
to consider S as a set of (lower) adjoints of isotone Galois connections that is
closed under composition. Using this formalism, [26] shows a standard agenda of
attribute implications, including a complete Armstrong-style [1] axiomatization
and characterization of completeness in data.

The parameterizations by systems of isotone Galois connections can be used
not only in case of graded attribute implications but for other formalisms for
reasoning with if-then rules. For instance, attribute implications developed in
context of linear temporal logic [23] fall in this category as well. The properties of
this family of parameterizations and related closure structures are studied in [27].

1.4 Our Contribution

As an alternative to the well-known Armstrong inference system [1] which is not
very suitable for automated reasoning, [9] proposed a simplification logic and
novel algorithms for if-then rules based on simplification equivalence. Further
results derived from this work include automated methods based directly on the
simplification logic [17,18,8,16,15]. The simplification logic was later introduced
for graded attribute implications parameterized by hedges in [4].

In this paper, we outline a general simplification logic for graded if-then rules
whose semantics is parameterized by systems of isotone Galois connections. In
Section 2, we present the underlying algebraic structures that are involved in the
simplification logic as well as the parameterizations. We emphasize that, we utilize
the co-residuated lattices in order to have a reasonable truth-function of logical
difference upon which the simplification logic is based. The role of the classic
multiplications and residua in the ordinary residuated lattices is substituted by
the general parameterizations. In Section 3, we outline the logic including the
semantics of its formulas, we present an inference system and show its soundness.
Furthermore, in Section 4 and Section 5, we present a further properties of the
inference system and outline the completeness result.

2 Preliminaries

Throughout this paper we consider, as the structure of degrees, a complete co-
residuated lattice, that is, an algebra L = 〈L,≤,⊕,	, 0, 1〉 satisfying the following
conditions:
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– 〈L,≤, 0, 1〉 is a complete lattice where 0 is the least element and 1 is the
greatest element. As usual, we use the symbols ∨ and ∧ to denote suprema
(least upper bounds) and infima (greatest lower bounds), respectively.

– 〈L,⊕, 0〉 is a commutative monoid.
– The pair 〈⊕,	〉 satisfies the following adjointness property:

For all a, b, c ∈ L, a ≤ b⊕ c if and only if a	 b ≤ c. (8)

Notice that (8) is equivalent to the following condition:

(a⊕ b)	 a ≤ b ≤ a⊕ (b	 a), for all a, b ∈ L. (9)

Any complete Brouwerian algebra [21,20] (also known as complete co-Heyting
algebra) is a complete co-residuated lattice. Thus, as an example of complete co-
residuated lattice, one has the unit interval with the operations ⊕ and 	 such
that a⊕ b = max{a, b}, a	 b = a when b < a, and a	 b = 0 otherwise. We also
take advantage of the following properties:

a ≤ b if and only if a	 b = 0, (10)

a	 0 = a, (11)

a	 b ≤ a ≤ a⊕ b, (12)

b ≤ c implies a⊕ b ≤ a⊕ c, b	 a ≤ c	 a and a	 c ≤ a	 b, (13)

a ∨ b ≤ a⊕ (b	 a) ≤ a⊕ b, (14)

a⊕ ((a⊕ b)	 c) = a⊕ (b	 c), (15)

a⊕ (b ∧ c) = (a⊕ b) ∧ (a⊕ c). (16)

For illustration, we use a running example based on a particular structure of
degrees. The structure is shown in the next example.

Example 1. Consider L = 〈L,≤,⊕,	, 0, 1〉 where L = { i10 | i ∈ N, 0 ≤ i ≤ 10},
the relation ≤ is the usual order, and ⊕ and 	 are defined as follows:

a⊕ b =

{
a+ b, if a+ b ≤ 1

2 ,
max{ 12 , a, b}, otherwise,

a	 b =





0, if a ≤ b,
1− b, if 0 ≤ b < a ≤ 1

2 ,
max{a, b}, otherwise.

It is easy to see that L is a complete co-residuated lattice.

Using L, we use the notion of L-fuzzy sets, i.e., maps from non-empty universe
sets to L. The collection of all L-fuzzy sets in universe Y is denoted by LY . Also,
in the examples we use the usual notation {. . . , y/A(y) . . .} for writing L-fuzzy
sets in finite universes.

Operations in L can be extended pointwise to L-fuzzy sets in the usual way:
For A,B ∈ LY the L-fuzzy sets A ⊕ B and A 	 B are defined by (A ⊕ B)(y) =
A(y)⊕B(y) and (A	B)(y) = A(y)	B(y) for all y ∈ Y .

The parameterizations [26] we use in out paper are defined in terms of isotone
Galois connections in 〈LY ,⊆〉. Specifically, we consider pairs of self-maps 〈f , g〉,
i.e., f : LY → LY and g : LY → LY , such that,

for all A,B ∈ LY , f(A) ⊆ B iff A ⊆ g(B). (17)
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In this pair, each mapping is uniquely determined by the other, because f(A) =⋂{B ∈ LY | A ⊆ g(B)} and g(B) =
⋃{A ∈ LY | f(A) ⊆ B}. It is well-known

that (17) is equivalent to postulating that both of the following conditions hold:

1. f and g are isotone, i.e., A ⊆ B implies f(A) ⊆ f(B) and g(A) ⊆ g(B) for
all A,B ∈ LY .

2. g ◦ f is inflationary (extensive) and f ◦ g is deflationary (intensive), i.e.,
A ⊆ g(f(A)) and f(g(A)) ⊆ A for all A ∈ LY .

In fact, g◦f is a closure operator and f ◦g is a kernel operator (interior operator).
For any isomorphism f in 〈LY ,⊆〉, the pair 〈f ,f−1〉 is an isotone Galois

connection. Thus, the identity mapping IY : LY → LY , with IY (A) = A for all
A ∈ LY , provides an isotone Galois connection. Another important example is
〈0Y ,1Y 〉 where 0Y (A)(y) = 0 and 1Y (A)(y) = 1, for any A ∈ LY and y ∈ Y .

In addition, given two isotone Galois connections 〈f1, g1〉 and 〈f2, g2〉, their
composition 〈f1 ◦ f2, g2 ◦ g1〉 is also an isotone Galois connection.

Definition 1. A family of isotone Galois connections S in 〈LY ,⊆〉 is said to be
an L-parameterization [26] if it is closed for composition and contains the identity.

In other words, S is an L-parameterization iff S =
〈
S, ◦, 〈IY , IY 〉

〉
is a monoid.

Example 2. Consider the algebra L introduced in Example 1, an arbitrary non-
empty set Y and, for each ` ∈ L, an isotone Galois connection 〈f `, g`〉 in 〈LY ,⊆〉
defined as follows: for all A ∈ LY and y ∈ Y ,

f `(A)(y) = max{0, A(y)− `} and g`(A)(y) = min{1, A(y) + `}.
In particular, f1 = 0Y , g1 = 1Y , and f0 = g0 = IY .

The family S = {〈f i
5
, g i

5
〉 | i ∈ N, 0 ≤ i ≤ 5} is an L-parameterization.

3 Parameterized Simplification Logic

Given a non-empty alphabet Y , whose elements are named attributes, the set of
well-formed formulas of the language is:

LY = {A⇒ B | A,B ∈ LY }.
These well-formed formulas will be named implications and, in each implication,
the first and the second component will be named premise and conclusion respec-
tively. Finally, the sets of implications Σ ⊆ L will be named theories.

We have just introduced the syntax of our logic. In the rest of the section we
complete its formal presentation. Thus, first we introduce the semantics of the
logic, second we present an axiomatic system and, finally, we show that both the
semantic and the syntactic points of views coincide proving the soundness and
completeness of the axiomatic system.

3.1 Semantics

Before we define the interpretation of formulas, we introduce S-additive L-fuzzy
sets that will play the role of models.
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Definition 2. Let Y be a non-empty set and S be an L-parameterization. An
L-fuzzy set A ∈ LY is said to be S-additive if f(B) ⊆ A and f(C) ⊆ A imply
f(B ⊕ C) ⊆ A, for all B,C ∈ LY and 〈f , g〉 ∈ S.

The following proposition follows directly from Definition 2 and (17).

Proposition 1. Let Y be a non-empty set and S be an L-parameterization. An
L-fuzzy set A ∈ LY is S-additive if and only if g(A)⊕ g(A) = g(A).

Example 3. Let L be the algebra introduced in Example 1, S be the L-paramete-
rization introduced in Example 2, and Y be an arbitrary non-empty set. A set
A ∈ LY is S-additive if and only if, for all y ∈ Y , A(y) = 0 or A(y) ≥ 1

2 .

Fixed S being an L-parameterization, the models of the logic are defined in
terms of S-additive L-sets as follows:

Definition 3. Let A ⇒ B ∈ LY . An S-additive set M ∈ LY is said to be a
model for A⇒ B if f(A) ⊆M implies f(B) ⊆M , for all 〈f , g〉 ∈ S.

The set of models for A ⇒ B is denoted by Mod(A ⇒ B). As usual, we say
that an S-additive set M is model for a theory Σ ⊆ LY if it is model for all the
implications A⇒ B ∈ Σ, that is, Mod(Σ) =

⋂
A⇒B∈ΣMod(A⇒ B).

As it is usual for graded attribute implications, we can interpret our formulas
in L-contexts. An L-context I = 〈X,Y, I〉 consists of a non-empty sets X (and Y )
of objects (and attributes—as before) and a map I : X × Y → L. For x ∈ X,
we consider Ix ∈ LY such that Ix(y) = I(x, y) for all y ∈ Y . An L-context
I = 〈X,Y, I〉 is called a model of A⇒ B whenever {Ix | x ∈ X} ⊆ Mod(A⇒ B).

Example 4. Consider the algebra L introduced in Example 1 and the L-paramet-
erization S introduced in Example 2. For the following L-contexts

I1 y1 y2 y3

x1
3
5

3
5 1

x2 1 1 0

x3 0 4
5

4
5

I2 y1 y2 y3

x1
7
10

7
10 1

x2 1 1 0

x3 0 1
2

1
2

we have that I1 is model for {y1/ 9
10} ⇒ {y2/1}. In contrast, I2 is not model for

this implication: f 1
5
({y1/ 9

10}) = {y1/ 7
10} ⊆ Ix1 and f 1

5
({y2/1}) = {y1/ 4

5} 6⊆ Ix1 .

Definition 4. Let A⇒ B ∈ LY and Σ1, Σ2 ⊆ LY .

– The implication A⇒ B is said to be semantically derived from the theory Σ1

if Mod(Σ1) ⊆Mod(A⇒ B). It is denoted by Σ1 |= A⇒ B.
– Both theories Σ1 and Σ2 are said to be semantically equivalent ifMod(Σ1) =
Mod(Σ2). It is denoted by Σ1 ≡ Σ2.
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3.2 Inference System

We look for a syntactic inference system capable of characterizing the semantic
entailment |= as defined before. In this subsection, we introduce the inference
system and prove its soundness.

Definition 5. For all A,B,C,D ∈ LY and 〈f , g〉 ∈ S, the inference system
consists of following axiom scheme:

Reflexivity : Infer A⇒ A, (Ref)

together the following inference rules:

Composition : From A⇒ B and A⇒ C infer A⇒ B ⊕ C, (Comp)

Simplification : From A⇒ B and C ⇒ D infer A⊕ (C 	B)⇒ D, (Simp)

Extension : From A⇒ B infer f(A)⇒ f(B). (Ext)

The notion of syntactic derivation, or inference, is introduced in the standard way.

Definition 6 (Syntactic derivation). An implication A ⇒ B ∈ LY is said to
be syntactically derived or inferred from a theory Σ ⊆ LY , denoted by Σ ` A⇒ B,
if there exists a sequence σ1, . . . , σn ∈ LY such that σn is the implication A⇒ B
and, for all 1 ≤ i ≤ n, one of the following conditions holds:

– σi ∈ Σ;
– σi is an axiom obtained from (Ref);
– σi is obtained by applying any of the inference rules (Comp), (Simp), or (Ext)

to formulas in {σj | 1 ≤ j < i}.

Theorem 1 (Soundness). For any implication A ⇒ B ∈ LY and any theory
Σ ⊆ LY , it follows that Σ ` A⇒ B implies Σ |= A⇒ B.

Proof. Assume that Σ ` A⇒ B, i.e. there exists a sequence σ1, . . . , σn ∈ LY such
that the conditions in Definition 6 hold. We prove that any model M ∈Mod(Σ)
is model for σi for all 1 ≤ i ≤ n and, therefore, M ∈Mod(A⇒ B).

It is straightforward that, if σi is an axiom or belongs to Σ, the set M is a
model for σi. Assume now that M ∈ Mod{σj | 1 ≤ j < i} and prove that M is
model for any formula that is obtained by applying (Comp), (Simp) or (Ext).

We only show the proof for (Simp) because the cases of (Comp) and (Ext) are
straightforward from the facts that the models are S-additive and S is closed
under compositions, respectively.

Consider U1 ⇒ V1, U2 ⇒ V2 ∈ {σj | 1 ≤ j < i}. Since M is model for these
implications, we have that f(Uk) ⊆M implies f(Vk) ⊆M , for all 〈f , g〉 ∈ S and
k ∈ {1, 2}. We must prove that M is model for U1 ⊕ (U2 	 V1)⇒ V2.

Consider 〈f , g〉 ∈ S such that f(U1 ⊕ (U2 	 V1)) ⊆M . Since f is isotone and
U1 ⊆ U1 ⊕ (U2 	 V1), we have that f(U1) ⊆M and, therefore, f(V1) ⊆M . Now,
from the S-additivity of M , f(V1 ⊕ U1 ⊕ (U2 	 V1)) ⊆ M . From (9), we have
U2 ⊆ V1 ⊕ (U2 	 V1) ⊆ V1 ⊕ U1 ⊕ (U2 	 V1) and, therefore, f(U2) ⊆ M . Finally,
since M is model for U2 ⇒ V2, we have that f(V2) ⊆M . ut
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4 Basic Properties

In this section we show equivalences that are derived from the primitive inference
rules and allow us to remove redundant information, i.e., simplify theories. In the
following proposition we introduce some derived inference rules.

Proposition 2. The following rules are derived from the axiomatic system:

Generalized Reflexivity : ` A⇒ B when B ⊆ A (GRef)

Transitivity : A⇒ B,B ⇒ C ` A⇒ C (Tran)

Generalization : A⇒ B ` C ⇒ D when A ⊆ C and D ⊆ B (Gen)

Generalized Composition : A⇒ B,C ⇒ D ` A ∪ C ⇒ B ⊕D (GComp)

Augmentation : A⇒ B ` A ∪ C ⇒ B ⊕ C (Augm)

Generalized Transitivity : A⇒ B,B ∪ C ⇒ D ` A ∪ C ⇒ D (GTran)

Proof. All (GRef)–(GTran) can be verified using properties of ⊕ and 	 in L. ut

One outstanding characteristic of Simplification logic is that their inference
rules induces a set of equivalences, providing a way to design automated prover
methods strongly based in the axiomatic system presented in Definition 5. In the
following proposition we present these equivalences.

Proposition 3. The following equivalences hold:

Decomposition : {A⇒ B} ≡ {A⇒ B	A} (DeEq)

Composition : {A⇒ B,A⇒ C} ≡ {A⇒ B⊕C} (CoEq)

Simplification : if A ⊆ C, {A⇒ B,C ⇒ D}≡{A⇒ B,C	B ⇒ D	B} (CoEq)

Proof. These equivalences, read from left to right, follow directly from (GRef),
(Comp), and (Simp). For limitations of space we will prove the opposite direction
only for (DeEq): In order to see that {A⇒ B	A} ` A⇒ B holds, observe that

(i) A⇒ B	A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .by Hypothesis.
(ii) A⇒ A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (Ref).
(iii) A⇒ A⊕(B	A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (i), (ii) and (Augm).
(iv) A⇒ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (iii) and (Gen).

In the last step, we have utilized the fact that B ⊆ A⊕B ⊆ A⊕ (B 	A). ut

5 Syntactic Closure and Completeness

In this section, we prove the completeness of the axiomatic system in the case of
both L and Y are finite. First, we consider, in this framework, the generalization
of the notion of syntactic closure of an L-set.

Theorem 2. Let Σ ⊆ LY be a theory. If LY is finite, the mapping cΣ : LY → LY

defined as follows: for each A ∈ LY ,

cΣ(A) =
⋃{B ∈ LY | Σ ` A⇒ B}
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is a closure operator in 〈LY ,⊆〉. In addition,

Σ ` A⇒ B if and only if B ⊆ cΣ(A) for all A,B ∈ LY .

Proof (Sketch). From (Ref) and (Tran), we easily obtain that cΣ is extensive and
isotone. Now, since LY is finite, applying (Comp) and (Gen) a finite number of
times we get Σ ` A⇒ cΣ(A). The rest is obvious. ut

Definition 7 (Syntactic closure). Given Σ ⊆ LY and A ∈ LY , the set cΣ(A)
is called syntactic closure of A with respect to Σ.

Theorem 3. If LY is finite, for any theory Σ ⊆ LY , we have that

Mod(Σ) = {cΣ(A) | A ∈ LY }.

Proof. First, for all A ∈ LY , we prove that cΣ(A) is S-additive: given 〈f , g〉 ∈ S,
if f(B) ⊆ cΣ(A) and f(C) ⊆ cΣ(A), from Theorem 2, Σ ` A ⇒ f(B) and
Σ ` A ⇒ f(C). The following sequence prove that Σ ` A ⇒ f(B ⊕ C) and,
therefore, f(B ⊕ C) ⊆ cΣ(A).

(i) A⇒ f(B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by Hypothesis.
(ii) A⇒ f(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by Hypothesis.

(iii) A⇒ f(B)⊕ f(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . by (i), (ii) and (Comp).
(iv) f(B)⊕ f(C)⇒ f(B ∪ C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (GRef).
(v) A⇒ f(B ∪ C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (iii), (iv) and (Tran).

(vi) B ⇒ B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (Ref).
(vii) B ∪ C ⇒ B ⊕ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . by (vi) and (Augm).

(viii) f(B ∪ C)⇒ f(B ⊕ C) . . . . . . . . . . . . . . . . . . . . . . . . . . by (vii) and (Ext).
(ix) A⇒ f(B ⊕ C) . . . . . . . . . . . . . . . . . . . . . . . . . . . .by (v), (viii) and (Tran).
In (iv), we have considered that f(B ∪C) = f(B)∪f(C) ⊆ f(B)⊕f(C)
because 〈f , g〉 is an isotone Galois connection and (14) holds.

Second, we prove that cΣ(A) is model for Σ: for all 〈f , g〉 ∈ S, if U ⇒ V ∈ Σ
and f(U) ⊆ cΣ(A), then Σ ` A ⇒ f(U) and, by (Ext), Σ ` f(U) ⇒ f(V ).
Therefore, by (Tran), Σ ` A⇒ f(V ) and f(V ) ⊆ cΣ(A).

Finally, it is straightforward that cΣ(M) = M for any M ∈Mod(Σ). ut

We already have the necessary results to ensure that everything that can be
semantically derived can also be syntactically inferred.

Theorem 4 (Completeness). If LY is finite, Σ |= A⇒ B implies Σ ` A⇒ B,
for any Σ ⊆ LY and A⇒ B ∈ LY .

Proof. If Σ 6` A ⇒ B, then, from Theorem 3, cΣ(A) ∈ Mod(Σ) but, from
Theorem 2, cΣ(A) 6∈ Mod(A⇒ B). Therefore, Σ 6|= A⇒ B. ut

Returning to the graded attribute implications parameterized by hedges, it
can be easily seen that our inference system and the complete logic presented
in our paper generalizes the simplification logic for (FASL) from [4]. Indeed, one
may put ⊕ = ∨ and let 	 be the adjoint operation satisfying (8). Furthermore,
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given a hedge ∗, one can consider an L-parameterization S which consists of all
〈fc∗⊗, gc∗→〉 where (fc∗⊗(A))(y) = c∗ ⊗A(y) and (gc∗→(A))(y) = c∗ → A(y) for
any A ∈ LY , c ∈ L, and y ∈ Y . In this setting, our inference system coincides
with the inference system of FASL. In particular, the rule of multiplication (from
A⇒ B infer c∗⊗A⇒ c∗⊗B), cf. also [6,26], coincides with (Ext).

6 Conclusions

In this work, we have proposed a parameterized simplification logic for reasoning
with graded implications in formal concept analysis. To achieve this goal, we have
used systems of isotone Galois connections to handle a large family of possible
interpretations in data dependencies. As it is usual, the logic was described in
terms of a formal language, the semantics, and the axiomatic system. We proved
its soundness and completeness. We showed how FASL proposed in [4] is a partic-
ular case of the parameterized simplification logic proposed in the present paper.
In addition, different logics can be seen as particular cases of the general setting
established here. Future research will focus on efficient algorithms based on the
proposed logic.
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14. Hájek, P.: On very true. Fuzzy Sets and Systems 124(3), 329–333 (2001)
15. Lorenzo, E.R., Adaricheva, K.V., Cordero, P., Enciso, M., Mora, A.: From an Im-

plicational System to its Corresponding D-basis. In: Proceedings of the Twelfth
International Conference on Concept Lattices and Their Applications, Clermont-
Ferrand, France, October 13-16, 2015. pp. 217–228 (2015)

16. Lorenzo, E.R., Bertet, K., Cordero, P., Enciso, M., Mora, A.: The direct-optimal
basis via reductions. In: Proceedings of the Eleventh International Conference on
Concept Lattices and Their Applications, Košice, Slovakia, October 7-10, 2014. pp.
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Abstract. Formal Concept Analysis (FCA) plays a crucial role in var-
ious domains, especially in qualitative data analysis. Here knowledge
are extracted from an information system in form of clusters (forming a
concept lattice) or in form of rules (implications basis). The number of
extracted pieces of information can grow very fast. To control the num-
ber of cluster, one possibility is to put some attributes together to get a
new attribute called a generalized attribute. However, generalizing does
not always lead to the expected results: the number of concepts can even
exponentially increase after generalizing two attributes [7,8]. A natural
question is whether there is a similarity measure, (possibly cheap and
fast to compute), that is compatible with generalizing attributes: i.e. if
m1,m2 are more similar than m3,m4, then putting m1,m2 together
should not lead to more concepts as putting m3,m4 together. This paper
is an attempt to answer this question.

Keywords: Formal Concept Analysis; Generalizing Attributes; Similarity Mea-
sures.

1 Introduction

In Formal Concept Analysis (FCA), a formal context is a binary relation
(G,M, I) that models an elementary information system, whereby G is the set of
objects, M the set of attributes and I ⊆ G×M the incidence relation. To extract
knowledge from such an elementary information system, one possibility is to get
clusters of objects and/or attributes by grouping together those sharing the
same characteristics. These pairs, called concepts, were formalized by Rudolf
Wille [16]. For A ⊆ G and B ⊆M we set

A′ = {m ∈M | g Im for all g ∈ A} and

B′ = {g ∈M | g Im for all m ∈ B}.
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A concept is a pair (A,B) such that A′ = B and B′ = A. A is called extent and
B intent of the concept (A,B). The set of concepts of a context K := (G,M, I)
is ordered by the relation (A,B) ≤ (C,D) :⇐⇒ A ⊆ C, and forms a lattice,
denoted by B(K) and called concept lattice of K. To control the size of concept
lattices, many methods have been suggested: decomposition [18,19,17], iceberg
lattices [14] α-Galois lattices [15], fault tolerant patterns [3], closure or kernel
operators and/or approximation [6]. In [7] the authors consider putting together
some attributes to get a generalized attribute. Doing this one has to decide when
an object satisfies a (new) generalized attribute. They discuss several scenarios
among which the following, called ∃-generalization:

an object g ∈ G satisfies a generalized attribute s ⊆ M if g satisfies at
least one of the attributes in s. i.e. s′ =

⋃{m′ | m ∈ s}.
In the rest of this contribution, we will simply say generalization to mean ∃-
generalization. By generalizing (i.e putting together some attributes) we reduce
the number of attributes and hope to also reduce the size of the concept lattice.
Unfortunately this is not always the case. In [8] the authors provide some exam-
ples where the size increases exponentially after generalizing two attributes and
also give the maximal increase.

In [1,5], the authors discuss similarity measures on concepts, and even on
lattices. For our purpose, we need a measure of similarity on attributes such
that if m1,m2 are more similar than m3,m4, then generalizing m1,m2 should
not lead to more concepts as generalizing m3,m4. We say that such a similarity
measure is compatible with the generalization. Given a set M of attributes,
a similarity measure on M is defined as a function S : M ×M → R such that
for all m1,m2 in M ,

(i) S(m1,m2) ≥ 0, positivity
(ii) S(m1,m2) = S(m2,m1) symmetry
(iii) S(m1,m1) ≥ S(m1,m2) maximality

If in addition S(m1,m2) ≤ 1, we say that S is normalized. Similarity measures
aim at quantifying to which extent two attributes resemble each other. Getting
a similarity measure compatible with the generalization will be a valuable tool
in preprocessing and will warn the data analyst on possible lost or gain when
generalizing.

The rest of the paper is organized as follows: In Section 2, we investigate
the existing similarity measures that we found in the literature. In Section 3, we
give a new similarity measure that characterize the pairs of attributes which can
increase the size of the concept lattice after generalizing. Section 4 exposes an
example on lexicographic data and Section 5 concludes the paper.

2 Test of Existing Similarity Measures in ∃-Generalization

Similarity and dissimilarity measures play a key role in pattern analysis problems
such as classification, clustering, etc. Ever since Pearson proposed a coefficient
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of correlation in 1896, numerous similarity measures and distance have been
proposed in various fields. These measures can be grouped into tree main types,
depending of the data on which they are used:

Correlation coefficients: They are often used in data to compare variables
with qualitative characters subdivided in more than two states.

Distance similarity coefficients: They are generally used in data with pure
quantitative variables. In most cases, for quantitative data, the similarity
between two taxa is expressed as a function of their distance in a dimensional
space whose coordinates are the characters.

Coefficients of association: They are often used in data with presence-absence
characters or in data with individuals having qualitative characters subdi-
vided into two states.

There are two subsets of coefficients of association: those that only depend on
characteristics present in at least one of the taxa compared, but are independent
of the attributes absent in both taxa (denoted by type 1), and those that also
take into account the attributes absent in both taxa (denoted by type 2). Those
measures use

– a as the number of cases where the two variables occur together in a sample,
– d as the number of cases where none of the two attributes occur in a sample,
– b as the number of cases in which only the first variable occur, and
– c as the number of cases where only the second variable occur.

One of the most important similarity measure of type 1 is the Jaccard measure(
a

a+b+c

)
, proposed in order to classify ecological species. Also in the ecological

field, the Dice coefficient of association
(

2a
2a+b+c

)
aims at quantifying the

extent to which two different species are associated in a biotope, the Sorensen

coefficient of association
(

4a
4a+b+c

)
and the Anderberg coefficient of as-

sociation
(

8a
8a+b+c

)
are of the same type. The Sneath and Sokal 2 similarity

coefficient
(

1
2a

1
2a+b+c

)
, put in place in order to compare organisms in numeri-

cal taxonomy, the Kulczynski similarity measure
(

1
2 ( a
a+b + a

a+c )
)

and the

Ochiai similarity measure ( a√
(a+b)(a+c)

) are also from this first type.

The most used similarity coefficient of the second type is the Sokal and

Michener coefficient of association
(

a+d
a+d+b+c

)
, also called the simple match-

ing coefficient, put in place to express the similarity between two species of

bees. Moreover, the Rogers and Tanimoto similarity measure (
1
2 (a+d)

1
2 (a+d)+b+c

)

whose aim was to compare species of plants in the ecological field, the Sokal and

Sneath 1 similarity coefficient ( 2(a+d)
2(a+d)+b+c ) was defined to make comparison in

numerical taxonomy and the Russels and Rao similarity measure ( a
a+d+b+c )

put in place with the aim of showing resemblance between species of anopheline
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larvae, are included in this type. Same are the Yule and Kendall similar-

ity coefficients
(

ad
ad+bc

)
, often used in the statistical field. Some of the above

similarity measures can be found in [5].
Regarding the definitions of the above kinds of similarity measures, only the

coefficients of association suitable to formal contexts, since formal contexts are
data with presence-absence characters. We will investigate the impact of these
coefficients of association on a special pair of attributes in some formal contexts.
The objective is to show that these similarity measures are not helpful in finding
whether their generalization increases the size of the lattice or not.

Our first example is an arbitrary formal context (G,M, I) containing two
attributes x, y ∈ M such that x′ ⊆ y′ and |x′ ∩ y′| = 1. Then |x′ \ y′| = 0 and
the generalization of the attributes x and y does not increase the size of the
lattice. Choosing |y′ \ x′| = 20 and |G \ (x′ ∪ y′)| = 1 yields a = |x′ ∩ y′| = 1,
b = |x′ \ y′| = 0, c = |y′ \ x′| = 20 and d = |G \ (x′ ∪ y′)| = 1. For the coefficient
of association of type 1 with Jaccard (Jc), Dice (Di), Sorensen (So), Anderberg
(An), Sneath and Sokal 2 (SS2), Kulczynski (Ku) and Orchiai (Orch), and the
coefficient of association of type 2 with Sokal and Michener (SM), Rogers and
Tanimoto (RT), Sneath and Sokal 1 (SS1) and Russel and Rao (RR), we get the
table below for s(x, y):

Jc Di So An SS2 Ku Orch SM RT SS1 RR

0,05 0,09 0,17 0,29 0,02 0,52 0,22 0,09 0,05 0,17 0,05

The table above shows that with almost all these measures, the similarity
measured between the attributes x and y is very low, despite the fact that their
generalization does not increase the size of the lattice.

Our second example is the formal context K6 := (S6∪{g1}, S6∪{m1,m2}, I)
below, with S6 = {1, 2, 3, 4, 5, 6}.

K6 1 2 3 4 5 6 m1 m2

1 × × × × × ×
2 × × × × × × ×
3 × × × × × × ×
4 × × × × × × ×
5 × × × × × × ×
6 × × × × × ×
g1 × × × × × ×

We observe that |m′1 ∩m′2| = 4, |m′1\m′2| = 1 and |m′2\m′1| = 1. Putting together
the attributes m1 and m2 by a ∃-generalization increases the size of the lattice
by 16. The following table shows the measures of type 1 and type 2 between
the attribute m1 and any other attribute i. All the similarity measures of the
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Jc Di So An SS2 Ku Orch SM RT SS1 RR

i ∈ S5 0,57 0,80 0,89 0,94 0,50 0,80 0,80 0,71 0,56 0,83 0,57

i = 6 0,83 0,91 0,95 0,97 0,71 0,92 0,91 0,75 0,75 0,92 0,71

i = m2 0,67 0,80 0,89 0,94 0,50 0,80 0,80 0,71 0,56 0,83 0,57

two types show that the attribute m1 is more similar to m2 than to any other
attribute i ∈ S6 (apart from i = 6); But putting m1 and m2 together increases
the size of the lattice. We can conclude that these similarity measures are not
compatible with the ∃-generalization. We are actually looking for a measure on
attributes that will flag pairs of attributes as less similar when putting these
together increases the size of the concept lattice.

3 A Similarity Measure Compatible with ∃-Generalization

In this section we define a similarity measure on attributes which is compati-
ble with the existential generalization. This generalization means that from an
attribute reduced context K := (G,M, I), two attributes a, b are removed and
replaced with an attribute s defined by s′ = a′∪ b′. We set M0 := M \{a, b} and

K00 :=(G,M0, I∩(G×M0)), (removing a, b from K)

K0s :=(G,M0 ·∪{s}, Is0), (adding s to K00)

where Is0 := (I∩(G ×M0)) ∪ {(g, s) | g I b or g I a}. Furthermore we denote the
set of extents of K00 by Ext(K00). We also set

H(a) := {A ∩ a′ | A ∈ Ext(K00) and A ∩ a′ /∈ Ext(K00)} ,
H(b) := {A ∩ b′ | A ∈ Ext(K00) and A ∩ b′ /∈ Ext(K00)} ,

H(a ∪ b) := {A ∩ (a′ ∪ b′) | A ∈ Ext(K00) and A ∩ (a′ ∪ b′) /∈ Ext(K00)} ,
H(a ∩ b) := {A ∩ (a′ ∩ b′) | A ∈ Ext(K00) and A ∩ (a′ ∩ b′) /∈ Ext(K00)} .

We will often write h(x) for |H(x)|, for any x ∈ {a, b, a ∩ b, a ∪ b}. Before we
start the construction, let us recall the following result partly proved in [8]:

Theorem 1. Let K := (G,M, I) be an attribute reduced context with |G| ≥ 3 and
|M | > 3. Let a and b be two attributes such that their existential generalization
s = a ∪ b increases the size of the concept lattice. Then

a) |B(K)| = |B(K00)|+ |H(a, b)|, with |H(a, b)| = |H(a) ∪H(b) ∪H(a ∩ b)|.
b) The increase is |H(a ∪ b)| − |H(a, b)| ≤ 2|a

′|+|b′| − 2|a
′| − 2|b

′| + 1.

Proof. Let K := (G,M, I) be such context and a, b two attributes of K. One
proceeds to the ∃-generalization of attributes a and b.

a) We set Ka = (G,M \ {b}, I). It holds:

|B(K)| = |B(Ka)|+ h∗(b) = |B(K00)|+ h(a) + h∗(b)
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where h∗(b) = |{B ∩ b′; B ∈ Ext(Ka), B ∩ b′ /∈ Ext(Ka)}|. Our aim is to
express h∗(b) as a function of h(b) and h(a∩ b). According to [8], Ext(Ka) =
Ext(K00)∪ H(a). Hence,

H∗(b) = {B ∩ b′ | B ∈ Ext(Ka), B ∩ b′ /∈ Ext(Ka)}
= {B ∩ b′ | B ∈ Ext(K00) and B ∩ b′ /∈ Ext(Ka)}

∪ {B ∩ b′ | B ∈ H(a) and B ∩ b′ /∈ Ext(Ka)}

Replacing Ext(Ka) by Ext(K00) ∪H(a), we get

{B ∩ b′ | B ∈ Ext(K00) and B ∩ b′ /∈ Ext(Ka)} = H(b) \ H(a) and

{B ∩ b′ | B ∈ H(a) and B ∩ b′ /∈ Ext(Ka)} = H(a ∩ b) \ (H(b) ∪H(a)).

Thus, h∗(b) = h(b) + h(a ∩ b)− |H(a) ∩H(b)|+ |H(a ∩ b) ∩H(a) ∩H(b)|
− |H(a ∩ b) ∩H(a)| − |H(a ∩ b) ∩H(b)|.

Hence,

|B(K)| = |B(K00)|+ |H(a)|+ |H(b)|+ |H(a ∩ b)|+ |H(a ∩ b) ∩H(a) ∩H(b)|
− |H(a) ∩H(b)| − |H(a ∩ b) ∩H(a)| − |H(a ∩ b) ∩H(b)|

= |B(K00)|+ |H(a) ∪H(b) ∪H(a ∩ b)|.

b) Although b) was proved in [8], we can now get it from a). To maximize the
increase a′ ∩ b′ should be ∅; i.e. |H(a ∩ b)| ∈ {0, 1}.
• If |H(a ∩ b)| = 0, then

|B(K)| = |B(K00)|+ |H(a) ∪H(b) ∪H(a ∩ b)|
= |B(K00)|+ |H(a)|+ |H(b)|.

• If |H(a ∩ b)| = 1, then we consider two subcases:
– The only element of H(a ∩ b) is not in H(a) ∪H(b). Then,

|H(a) ∩H(b)| = |H(a ∩ b) ∩H(a) ∩H(b)|
= |H(a ∩ b) ∩H(a)| = |H(a ∩ b) ∩H(b)| = 0

and |B(K)| = |B(K00)|+ |H(a)|+ |H(b)|+ |H(a ∩ b)|.
– The only element of H(a ∩ b) is either in H(a) or H(b). Then

|H(a ∩ b)|+ |H(a ∩ b) ∩H(a) ∩H(b)| − |H(a ∩ b) ∩H(a)| − |H(a ∩ b) ∩H(b)|

is equal to zero and |H(a) ∩H(b)| ∈ {0, 1}. Thus

|B(K)| = |B(K00)|+ |H(a)|+ |H(b)|+ 1− |H(a) ∩H(b)|.
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In all these subcases, considering that |B(K0s)| = |B(K00)|+ |H(a∪ b)|, the
increase after the generalization is

|B(K0s)| − |B(K)| = |H(a ∪ b)| − |H(a, b)|
≤ 2|a

′|+|b′| − 2|a
′| − 2|b

′| + (d1 + d2 − d0)

≤ 2|a
′|+|b′| − 2|a

′| − 2|b
′| + 1, since d1 + d2 − d0 ≤ 0,

with d1 = |{A ⊆ a′ | A ∈ Ext(K00)}|, d2 = |{A ⊆ b′ | A ∈ Ext(K00)}| and
d0 = |{A ⊆ a′ ∪ b′ | A ∈ Ext(K00)}|. ut

Now, we define the following gain function:

ψ : M ×M −→ Z
(a, b) 7−→ ψ(a, b) = |H(a ∪ b)| − |H(a, b)|

Note that H(a ∪ b) = H(b ∪ a), and H(a, b) = H(b, a) because the order of
adding the attributes a and b does not matter. Therefore ψ(a, b) = ψ(b, a). By
definition, ψ(a, a) = 0. Further, we define the map δ as followed:

δ : M ×M −→ R

(a, b) 7−→
{

1 if ψ(a, b) ≤ 0

0 else

Since K is a finite context, there is a pair of attributes a0, b0 in M such that

|a′0|+ |b′0| = max
a,b∈M

(|a′|+ |b′|).

We set n0 = 2|a
′
0|+|b′0| − 2|a

′
0| − 2|b

′
0| + 1. Then n0 ≥ 2|a

′|+|b′| − 2|a
′| − 2|b

′| + 1 for
all pairs {a, b} ⊆M . With the function δ, we construct the following map:

Sgen : M ×M −→ R
(a, b) 7−→ Sgen(a, b) = 1+δ(a,b)

2 − |ψ(a,b)|2n0

where |ψ(a, b)| is the absolute value of ψ(a, b). That leads to the following results.

Proposition 1. Let (G,M, I) be a reduced context with |G| ≥ 3 and |M | > 3.
Then Sgen is a normalized similarity measure on M .

Proof. Let a, b two attributes of (G,M, I). Since |ψ(a, b)| ≤ n0 we can easily
check that 0 ≤ Sgen(a, b) = Sgen(b, a) ≤ Sgen(a, a) = 1 holds. ut

Sgen also has the following properties:

Proposition 2. Let (G,M, I) be a reduced context with |G| ≥ 3 and |M | > 3.
Let a, b, c, d ∈M . It holds:

a) Sgen(a, b) ≥ 1
2 if and only if ψ(a, b) ≤ 0.
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b) If ψ(a, b) ≤ 0 < ψ(d, c) then Sgen(d, c) < Sgen(a, b).
c) If 0 < ψ(a, b) ≤ ψ(d, c) then Sgen(d, c) ≤ Sgen(a, b).
d) If ψ(a, b) ≤ ψ(d, c) ≤ 0 then Sgen(a, b) ≤ Sgen(d, c).

Proof. Let K = (G,M, I) be such a context and a, b, c, d ∈M .

a) If ψ(a, b) ≤ 0 then δ(a, b) = 1 and

Sgen(a, b) =
1 + δ(a, b)

2
− |ψ(a, b)|

2n0
=

1

2

(
2 +

ψ(a, b)

n0

)
≥ 1

2
.

Now, Sgen(a, b) ≥ 1
2 implies 1+δ(a,b)

2 − |ψ(a,b)|2n0
≥ 1

2 and |ψ(a, b)| ≤ n0δ(a, b).
If δ(a, b) = 0 then |ψ(a, b)| = 0. If δ(a, b) = 1 then ψ(a, b) ≤ 0 by definition
of δ. Hence, Sgen(a, b) ≥ 1

2 if and only if ψ(a, b) ≤ 0.
b) If ψ(a, b) ≤ 0 < ψ(d, c) then Sgen(d, c) < 1

2 ≤ Sgen(a, b).
c) If 0 < ψ(a, b) ≤ ψ(d, c) then δ(a, b) = δ(d, c) = 0, and

Sgen(d, c) =
1

2
− ψ(d, c)

2n0
≤ 1

2
− ψ(a, b)

2n0
= Sgen(a, b).

d) If ψ(a, b) ≤ ψ(d, c) ≤ 0 then δ(a, b) = δ(d, c) = 1, and

Sgen(a, b) = 1 +
ψ(a, b)

2n0
≤ 1 +

ψ(d, c)

2n0
= Sgen(d, c).

ut

Proposition 3. Let (G,M, I) be a reduced context and a, b ∈M . The following
assertions are equivalent:

(i) δ(a, b) = 1.
(ii) ψ(a, b) ≤ 0.
(iii) Sgen(a, b) ≥ 1

2 .
(iv) A ∃-generalization of a and b does not increase the size of the concept lattice.

Proof. (i)⇐⇒ (ii) follows from the definition of δ. (ii)⇐⇒ (iii) is Proposition 2
a). (ii) ⇐⇒ (iv) follows from the fact that ψ(a, b) = |H(a ∪ b)| − |H(a, b)| is
actually the difference |B(G,M ∪ {s} \ {a, b}, I)| − |B(G,M, I)| between the
number of concepts before and after generalizing a, b to s with s′ = a′ ∪ b′.

Therefore, generalizing two attributes a, b in a reduced context (G,M, I) in-
creases the size of the lattice if and only if Sgen(a, b) < 1

2 . The threshold 1
2 is

just a consequence of the way Sgen has been defined.
To test our results we have designed a naive algorithm (see Algorithm 1) that

computes Sgen on all pairs of attributes a, b of K. If the set of attributes M is
considered as a vector, then for any attribute a ∈ M , we set T(a) the set of all
attributes coming before a in M . The complexity of our algorithm is given by

∑

a∈M
(1 +

∑

b∈M\T (a)

((q(a, b) + 4)[4(q(a, b) + 1) + 4] + 3),
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which is equal to

|M |+
∑

a∈M

∑

b∈M\T (a)

(4q2(a, b) + 24q(a, b) + 35), with q(a, b) = |Ext(K00)|.

Algorithm 1: Computing a similarity measure

Data: An attribute reduced context (G,M, I)
Result: ψ and Sgen on M ×M

1 Choose x, y in M , x 6= y with |x′|+ |y′| maximal;

2 n0 ← 2|x
′|+|y′| − 2|x

′| − 2|y
′| + 1;

3 T ← ∅;
4 foreach a in M do
5 T ← T ∪ {a};
6 foreach b in M \ T do
7 Ext0 ← Ext(G,M \ {a, b}, I);
8 foreach x in {a, b, a ∪ b, a ∩ b} do H(x)← ∅;
9 foreach A in Ext0 do

10 foreach x in {a, b, a ∪ b, a ∩ b} do
11 if A ∩ x′ /∈ Ext0 then H(x)← H(x) ∪ {A ∩ x′};
12 end

13 end

14 end
15 ψ(a, b)← |H(a ∪ b)| − |H(a) ∪H(b) ∪H(a ∩ b)|; ψ(b, a)← ψ(a, b);
16 if ψ(a, b) ≤ 0 then
17 δ(a, b)← 1
18 else
19 δ(a, b)← 0
20 end

21 Sgen(a,b) ←
1 + δ(a, b)

2
− |ψ(a, b)|

2n0
22 end

4 An Example from Lexicographic Data

Formal Concept Analysis has been applied to compare lexical databases. In [11]
Uta Priss proposes an example in where the information channel is ”building”.
With respect to this, the main difference between English and German is that in
English, the word ”house” only refers to small residential buildings whereas in
German even small office buildings and large residential buildings can be called
”Haus”, and only factories would normally not be called ”Haus”. Moreover,
”building” in English refers to either a factory, an office or even a big residential
house. But only a factory can be called ”Gebäude” in German. She presented in
the figure below the information channel of the word ”building” in the sense of
Barwise and Seligman [2] in both English and German.
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With the above information channel we can construct a formal context as fol-
lows: The objects are different kinds of buildings: small house (”h”), office (”o”),
factory (”f”) and large residential house (”l”). The attributes are different names
of these objects in both languages: English and German. These are ”building”,
”house”, ”Haus”, ”Gebäude”, ”large building” (short: ”large”), ”business build-
ing” (short: ”business”), ”residential house” (short: ”residential”), and ”small
house” (short: ”small”). Thus G = {h, o, f, l} and M = {”building”, ”house”,
”Haus”, ”Gebäude”, ”large”, ”business”, ”residential”, ”small”}. In the follow-
ing, a set of objects will be denoted as a concatenation of those objects. For
example we will write ho or oh for the set {h, o}. The English and German
classifications of the word ”building” are then presented in the following formal
context:

building house Haus Gebäude large business residential small

factory × × × ×
office × × × ×
house × × × ×
large × × × ×

For this formal context, n0 = 23+3−23−23 +1 = 49. Let consider the attributes
a := house and b := Gebäude. Then a′ ∪ b′ = {f, h} and a′ ∩ b′ = ∅. We have

Ext(K00) = {fohl, fol, ohl, fo, fl, ol, oh, hl, f, o, h, l, ∅}, and

H(a) = H(b) = H(a ∩ b) = ∅ and H(a ∪ b) = {fohl}. Therefore, ψ(a, b) = 1
and Sgen(a, b) = 1

2 − 1
98 ≈ 0.49. Using our algorithm, we compute ψ(a, b) and
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Sgen(a, b) for all pairs a, b ∈M . The table below show ψ(a, b) below the diagonal,
and Sgen(a, b) on the rest.

building house Haus Gebäude large business residential small

building 1.00 0.98 0.97 1.00 0.99 0.98 0.97 0.97

house −2 1.00 1.00 0.49 0.49 0.49 1.00 1.00

Haus −3 0 1.00 0.98 0.97 0.97 0.99 0.99

Gebäude 0 1 −2 1.00 1.00 1.00 0.49 0.49

large −1 1 −3 0 1.00 0.98 0.49 0.97

business −2 1 −3 0 −2 1.00 0.98 0.49

residential −3 0 −1 1 1 −2 1.00 0.98

small −3 0 −1 1 −3 1 −2 1.00

From the above table, the attributes ”house” and ”Gebäude” are less similar.
It reflects the fact that these words ”Gebäude” (in German) and ”house” (in En-
glish) do not have the same meaning. It is also the case for the attributes ”house”
and ”business buildings” as well as ”Gebäude” and ”residential building”. Hence,
putting together each of the above pairs of attributes will increase the size of
the lattice. On the contrary, the attributes ”large” and ”Haus”, ”building” and
”Haus” are more similar through Sgen. It is because the word ”Haus” which
designates a house, a business office or simply large building in German, often
coincides with the words ”building” or ”large building” in English. For these
pairs, the existential generalization will not increase the size of the lattice.

5 Conclusion

We have constructed a similarity measure compatible with the change in the size
of the lattice after a generalization of a pair of attributes in a formal context.
That measure should send a warning when grouping two attributes. Also, it
enables us to characterize contexts where generalizing two attributes increases
the size of the concept lattice. Our next step is to look at the implication between
generalized attributes. We suspect that the number of implications decreases if
the number of concepts increases.
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Order-embedded Complete Lattices

Bernhard Ganter

TU Dresden, Germany

Abstract. We study complete lattices which are contained in other com-
plete lattices as suborders, but not necessarily as subsemilattices. We de-
velop a representation of such lattices by means of implications, and show
how to navigate them using a modification of the standard Next clo-
sure algorithm. Our approach is inspired by early work of Shmuely [8]
and Crapo [1].

Keywords. Complete lattice, implication, fixed point.

1 Introduction

The interest in concept lattices [5] has stimulated the creation of algorithms for
generating lattices, and the availability of fast algorithms may conversely have
contributed to the popularity of concept lattices. Moreover, concept lattices have
easy representations either by a binary relation or by a set of implications, both
of which can conveniently be used as input for the algorithms.

Although all complete lattices are isomorphic to concept lattices, they some-
times come in a form for which the above mentioned algorithms are not easy to
apply. There are, for example, many families of sets which form complete lattices
when ordered by the subset relation ⊆, but are neither closure nor kernel sys-
tems. We provide an “implicational” representation for such lattices and modify
one of the standard algorithms accordingly.

Throughout the paper, (L,≤) will be some abstract complete lattice. The
reader may assume, without much loss of generality, that (L,≤) is a powerset
lattice (P(M),⊆). We use the abstract setting because it is more transparent.

2 Monotone Functions

Definition 1 Let (L,≤) be a complete lattice. A function ϕ : L→ L is mono-
tone1 if x ≤ y always implies ϕ(x) ≤ ϕ(y). A monotone function is called
idempotent if ϕ(x) = ϕ(ϕ(x)) for all x ∈ L,
extensive if x ≤ ϕ(x) for all x ∈ L,
contractive2 if x ≥ ϕ(x) for all x ∈ L,
tensive if ϕ(x) = ϕ(x ∧ ϕ(x)) for all x ∈ L,
increasing3 if ϕ(x) ≤ ϕ(ϕ(x)) for all x ∈ L, and
decreasing if ϕ(x) ≥ ϕ(ϕ(x)) for all x ∈ L. ♦
1 Synonyms are order-preserving and isotone.
2 A synonym is intensive.
3 Following Shmuely [8]. Tarski [9] uses “increasing” in the sense of “order-preserving”.
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Fig. 1. The result of an attribute exploration [4] for monotone functions, see Proposi-
tion 1.

Proposition 1. Figure 1 shows the logical hierarchy of the properties given in
Definition 1. In particular, if ϕ : L → L is monotone, then the following state-
ments hold (as well as their duals):

1. If ϕ is extensive, then ϕ is tensive.
2. If ϕ is tensive, then ϕ is increasing.
3. ϕ is idempotent iff ϕ is both increasing and decreasing.
4. If ϕ is idempotent and extensive, then ϕ is dually tensive.

Moreover, there are examples of monotone functions falsifying other implica-
tions, as indicated in the diagram.

Proof. 1) If x ≤ ϕ(x), then x ∧ ϕ(x) = x and thus ϕ(x ∧ ϕ(x)) = ϕ(x). 2) From
x ∧ ϕ(x) ≤ ϕ(x) we infer ϕ(x) = ϕ(x ∧ ϕ(x)) ≤ ϕ(ϕ(x)). 3) is obvious. 4) If
x ≤ ϕ(x) then ϕ(x ∨ ϕ(x)) = ϕ(ϕ(x)) = ϕ(x).

For the separating examples we use functions of the form ϕL, to be defined
in Proposition 6. (L,≤) is the powerset lattice of {a, b, c} for E1 and E2 and of
{a, b} for E3. E1: L = {{a} → {b, c}, {b} → {c}, {c} → {b}}, E2: L = {{a} →
{b}, {a, b, c} → {a, b, c}} (see Example 1 below), E3: L = {∅ → {a}, {a} →
{b}, {b} → {b}}. Ed1 , Ed2 , Ed3 are dual to E1, E2, E3. ut

Definition 2 If ϕ : L → L is a mapping and x ∈ L, then we say that x is a
fixed point of ϕ, iff ϕ(x) = x, and that x is a closed point of ϕ, iff ϕ(x) ≤ x.

♦

Proposition 2. Every fixed point is closed. If ϕ is monotone and increasing,
and x is closed, then ϕ(x) is fixed.
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Proof. The first statement is obvious. Suppose that x is closed, i.e., that x ≥
ϕ(x). Then ϕ(x) ≥ ϕ(ϕ(x)) ≥ ϕ(x), since ϕ is monotone and increasing. We
conclude that ϕ(x) = ϕ(ϕ(x)) and thus ϕ(x) is fixed.

The proposition may suggest a pairing between fixed and closed elements. But
note for example that when ϕ is the function which maps everything to the
least element of (L,≤), then every element of (L,≤) is closed, but only the least
element is fixed.

A function that is both idempotent and monotone is called a closure op-
erator on (L,≤) if it is extensive, and is a kernel operator if contractive.
The set of fixed points of a closure operator is called a closure system. It is
well known that the closure systems are precisely the

∧
-subsemilattices. Each

complete meet-subsemilattice of a complete lattice is itself a complete lattice,
because the join operation can be expressed in terms of the meet operation:
the join of a subset S equals the meet of all upper bounds of S. However, this
join operation usually is not identical with the join in the original complete lat-
tice. The meet-subsemilattice therefore is a complete lattice, but not a complete
sublattice in general. In a closure system of sets, for example, the join of two
elements is usually not given by their set union, but by the closure of this union.
Thus a closure system, ordered by set inclusion, is a complete lattice, but not
necessarily a sublattice.

The fixed points of a kernel operator are closed under arbitrary joins and
thus form a

∨
-subsemilattice, also called a kernel system. Again we get the

second operation from the first, so that each kernel system also is a complete
lattice.

This shows that closure systems are not the only subsets yielding order-
embedded complete lattices. In fact, the following is well known4:

Lemma 1. A subset of a complete lattice (L,≤), with the induced order, is a
complete lattice if and only if it is the image of a monotone and idempotent
function ϕ : L→ L.

Proof. Suppose that F = {ϕ(x) | x ∈ L} for some monotone and idempotent
function ϕ : L→ L. We claim that for any subfamily S ⊆ F the element ϕ(

∧S)
is the infimum of S in F . Clearly

∧S ≤ s holds for every s ∈ S. Since ϕ is
monotone, we get that ϕ(

∧S) ≤ ϕ(s) = s for all s ∈ S, which shows that
ϕ(
∧S) is a lower bound of S. But any lower bound b of S must satisfy b ≤ s for

all s ∈ S and therefore b ≤ ∧S. If b ∈ F , then b = ϕ(b) ≤ ϕ(
∧S), as desired.

For the converse suppose that F ⊆ L is a complete lattice and define a
function ϕ : L → L by ϕ(x) := supF{f ∈ F | f ≤ x} (where supF denotes
the supremum in F). This function is clearly idempotent and monotone, and its
image is F . ut

Lemma 1 adds a kind of converse to the celebrated Knaster-Tarski theo-
rem [6,9], which states that the set of fixed points of any monotone function on
a complete lattice is itself a complete lattice:

4 Crapo [1] cites Duffus and Rival [2], while Shmuely [8] cites older notes by Crapo.
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Corollary 1. A subset F ⊆ L of a complete lattice (L,≤), with the induced
order, is a complete lattice if and only if F is the set of fixed points of some
monotone function.

Two details from the proof of Lemma 1 will be used later. We list them as
separate propositions:

Proposition 3. Let ϕ be an idempotent and monotone function on a complete
lattice (L,≤), and let

∨
,
∧

denote the supremum and infimum operation of
(L,≤), respectively.

In the complete lattice of fixed points of ϕ, the supremum and infimum of a
set S are given by

ϕ(
∨
S) and ϕ(

∧
S).

The second part of the proof of Lemma 1 is stronger than necessary: the function
which was used is not only monotone and idempotent, but has an additional
property:

Proposition 4. The function which was used in the proof of Lemma 1,

x 7→ ϕ(x) := supF{f ∈ F | f ≤ x},

is tensive.

Proof. If f ≤ x and f ∈ F , then f ≤ ϕ(x) and so f ≤ x ∧ ϕ(x). Thus

{f ∈ F | f ≤ x} ⊆ {f ∈ F | f ≤ x ∧ ϕ(x)},

which implies that ϕ(x) ≤ ϕ(x∧ϕ(x)). Since ϕ is monotone, we conclude equality.
ut

A simple consequence of the Knaster-Tarski result which we will use is

Proposition 5. If (L,≤) is a complete lattice, ϕ : L → L is monotone, and
x ∈ L is an element for which x ≤ ϕ(x), then there is a least fixed point of ϕ
that is greater or equal to x.

Proof. Note that since ϕ is monotone, the set ↑ x := {y ∈ L | x ≤ y} is mapped
into itself by ϕ: when y ≥ x, then ϕ(y) ≥ ϕ(x) ≥ x. But ↑ x is a complete lattice
as well, to which the Knaster-Tarski result can be applied. So there is a least
fixed point of ϕ in ↑ x. ut

Lemma 2. If ϕ : L→ L is monotone and increasing, then for each x ∈ L there
is a least closed element ϕ(x) ≥ x, and there is a least fixed element ϕ̂(x) ≥ ϕ(x).
If ϕ is tensive, then so is ϕ̂.

Proof. For the first claim define a function ρ(x) := x ∨ ϕ(x). Note that the
fixed points of ρ are precisely the closed points of ϕ. Clearly ρ is monotone and
extensive, so by Proposition 5 there is a least fixed point y of ρ which is greater
or equal to x.
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The second claim follows again from Proposition 5, assuming that the func-
tion ϕ is increasing.

Finally, assume that ϕ is tensive. By definition, ϕ̂(x∧ϕ(x)) is the least fixed
point of ϕ greater or equal to ϕ(x ∧ ϕ(x)). But when ϕ is tensive, the latter
equals ϕ(x), and therefore ϕ̂(x ∧ ϕ(x)) = ϕ̂(x). But since ϕ(x) ≤ ϕ̂(x), we get
ϕ̂(x) = ϕ̂(x ∧ ϕ(x)) ≤ ϕ̂(x ∧ ϕ̂(x)) ≤ ϕ̂(x), which concludes the proof. ut
Note that the function ϕ, defined in Lemma 2, is a closure operator, and that ϕ̂
has the same fixed points as ϕ.

Lemma 3. If ϕ is monotone and increasing, then for all x ∈ L

ϕ̂(x) = ϕ(ϕ(x)).

Proof. ϕ̂(x) is fixed and therefore closed, and contains ϕ(x), thus ϕ̂(x) ≥ ϕ(ϕ(x)).
It remains to show that ϕ̂(x) ≤ ϕ(ϕ(x)). Proposition 2 yields that ϕ(ϕ(ϕ̂(x)))
is fixed and less or equal to ϕ(ϕ(x)). The proof is complete if we show that this
fixed element contains ϕ(x), because that forces it to be equal to ϕ̂(x) (which
is the least such fixed point). But from ϕ(x) ≤ ϕ(ϕ(x)) and the fact that ϕ is
increasing and monotone we conclude that ϕ(x) ≤ ϕ(ϕ(x)) ≤ ϕ(ϕ(ϕ(x))). ut

3 Implications

There is a simple way of constructing such monotone and increasing functions
without reference to an embedded lattice. It relies on implications. An impli-
cation over L is just an ordered pair5 of elements x, y ∈ L, denoted x→ y. We
say that a lattice element z respects an implication x→ y if x 6≤ z or y ≤ z.
Proposition 6. Let L be a set of implications over L. The function ϕL : L→ L,
defined as

ϕL(x) :=
∨
{a ∨ b | a ≤ x, a→ b ∈ L},

is monotone and tensive. Conversely, if ϕ : L → L is monotone and tensive,
then ϕ = ϕL for

L = {x ∧ ϕ(x)→ ϕ(x) | x ∈ L}.
Proof. When x ≤ y, then {a → b ∈ L | a ≤ x} ⊆ {a → b ∈ L | a ≤ y},
and thus ϕL(x) ≤ ϕL(y). So ϕL is monotone. For the other claim, note that if
a → b ∈ L and a ≤ x, then a ≤ ϕL(x) and thus a ≤ x ∧ ϕL(x). It follows that
ϕL(x ∧ ϕL(x)) ≥ ϕL(x). Monotonicity of ϕL yields equality and concludes the
proof that ϕL is tensive.

For the converse we claim that we have ϕL(y) = ϕ(y) for all y ∈ L. Since
y∧ϕ(y) ≤ y and y∧ϕ(y)→ ϕ(y) ∈ L, we get that ϕL(y) ≥ ϕ(y). If x∧ϕ(x) ≤ y
holds for some x, then ϕ(x) = ϕ(x ∧ ϕ(x)) ≤ ϕ(y) (since ϕ is monotone and
tensive), and therefore ϕL(y) ≤ ϕ(y). This proves ϕL = ϕ. ut
5 The notion abstracts that of an attribute implication in Formal Concept Analysis.

Note that in our approach implication sets are not assumed to be closed under the
Armstrong rules.
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Example 1. The separating example E2 of Figure 1 was defined in the proof of
Proposition 1 as the monotone function ϕL on the power set of {a, b, c} given by
the implication set

L := {{a} → {b}, {a, b, c} → {a, b, c}}.

According to the definition in Proposition 6, this function has the following
values:

x ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
ϕL(x) ∅ {a, b} ∅ ∅ {a, b} {a, b} ∅ {a, b, c} .

It is easy to check that the function is monotone, idempotent, and tensive. But
it is not dually tensive, since ϕL({a, c}) = {a, b} 6= ϕL({a, c} ∪ ϕL({a, c})) =
ϕL({a, b, c}) = {a, b, c}.

Following Definition 2 we call an element x ∈ L fixed under a set L of
implications, if x = ϕL(x), and closed, if x ≥ ϕL(x). It is easy to see that the
latter is equivalent to the standard definition in Formal Concept Analysis, where
an element is called closed under L when it respects all implications in L. The
corresponding closure operator is often denoted x 7→ L(x). Here we write ϕL, as
it is suggested by Lemma 2. The following is a corollary to that lemma.

Corollary 2. Let L be a set of implications over L. Then the function ϕ̂L : L→
L, defined by

ϕ̂L(x) is the least fixed point of ϕL greater or equal to ϕL(x),

is idempotent, monotone, and tensive. Moreover,

ϕ̂L(x) = ϕL(ϕL(x)) for all x ∈ L.

A very welcome consequence of this corollary is that ϕ̂L can efficiently be com-
puted, for example by the LinClosure algorithm (see Algorithm 15 in [4]).

It is actually possible to give a (kind of) explicit representation of ϕ̂L in
terms of ϕL: If (L,≤) is finite, then

ϕ̂L(x) := ϕL(x) ∨ ϕL(ϕL(x)) ∨ ϕL(ϕL(ϕL(x))) ∨ . . . . (∗)

Without the finiteness condition it may be necessary to apply ϕL “transfinitely
often”, as the following example shows.

Example 2. Let L := N∪{∞1,∞2}, where the integers are in the natural order,
∞1 is greater than all integers and ∞1 <∞2. Moreover, let

L := {0→ 1, 1→ 2, 2→ 3, . . .} ∪ {∞1 →∞2}.

For x := 0 we get ϕL(x) = 1, ϕL(ϕL(x)) = 2, and so on. Applying formula (∗)
yields ϕ̂L(0) = 1∨2∨3∨. . . =∞1. But this is no fixed point, since ϕL(∞1) =∞2.

158 Bernhard Ganter



Example 3. Let M := {a, b, c, d}, (L,≤) := (P(M),⊆), and

L := {{a} → {a}, {b} → {b}, {b, c, d} → {b, c, d}, {a, b} → {c}}.

Then, for example, ϕ̂L({a, c, d}) = {a} and ϕ̂L({a, b, d}) = {a, b, c}. ϕ̂L has six
fixed points; ∅, {a}, {b}, {a, b, c}, {b, c, d}, and {a, b, c, d}. These six sets, ordered
by ⊆, form a complete lattice which is neither a

⋂
- nor a

⋃
-subsemilattice of

the powerset lattice.

We claim that our construction based on implications is universal in the sense,
that every embedded complete lattice is obtained. This is shown in the theorem
below.

Theorem 1. For every monotone function ϕ : L → L on a complete lattice
(L,≤) there is a set L of implications over L such that ϕ and ϕ̂L have the same
fixed points.

Proof. The set F of fixed points of any monotone function is, according to
Knaster and Tarski (see Corollary 1), a complete lattice. For each such com-
plete lattice (F ,≤) we therefore need to find a suitable set of implications. Let
supL denote the supremum in (L,≤) and supF denote the supremum in (F ,≤).
We choose

L := {supL S → supF S | S ⊆ F}
and prove that the fixed points of ϕ̂L are precisely the elements of F :

First suppose that e ∈ F . The ϕL(e) = e because, first of all, e→ e ∈ L, and
secondly e respects all implications in L: if supL S ≤ e for some set S ⊆ F , then
e ≥ s for all s ∈ S and, since (F ,≤) is a complete lattice, e ≥ supF S. Conversely,
if e = ϕ̂L(e) is a fixed point of ϕ̂L, then let S := {f ∈ F | f ≤ e} be the set of
all F-elements below e. Since e respects the implication supL S → supF S, we
get supF S ≤ e. But whenever the premise of an implication in L is below e, it
must be below supL S. Therefore e = ϕL(e) = supF S and thus e ∈ F . ut
As an immediate consequence of Theorem 1 we get

Corollary 3. The subsets of a complete lattice which are, with the induced or-
der, complete lattices themselves, are precisely the sets of fixed elements under
some set of implications.

ϕ̂L is usually not extensive, while the closure operator ϕL is. That condition
can easily be achieved by including {x→ x | x ∈ L} into the list of implications
(it actually suffices to do this for a join-dense set of elements), so all closure
operators are of the form ϕ̂L for a suitable set L.

But kernel operators can be represented as well: If F is a kernel system, then
ϕ̂L is the corresponding kernel operator when L := {f → f | f ∈ F}. More
generally, if F is an arbitrary family of sets then the so defined function ϕ̂L is
the kernel operator for the kernel system generated by F .

Is it possible to find, for a given function, a suitable implication set without
reference to the embedded lattice of fixed points? The next proposition gives an
answer. However, we shall learn from Example 4 that this is not always practical.
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Proposition 7. If ϕ : L → L is monotone, idempotent, and tensive, then the
set

L := {x ∧ ϕ(x)→ ϕ(x) | x ∈ L}
is such that ϕ̂L = ϕ.

Proof. From Proposition 6 we get that ϕ = ϕL. But when ϕ is idempotent,
then ϕ(x)→ ϕ(x) ∈ L, which makes ϕ(x) a fixed point of ϕL, and we conclude
ϕ = ϕL = ϕ̂L. ut

To summarize: Every embedded complete lattice is the image of some function
which is monotone, idempotent and tensive (Proposition 4). These are precisely
the functions which can be described by means of implications as in Corollary 2.
Implications can easily be found for any given such function (Proposition 7).

4 The Next Fixed Point Algorithm

Many years ago the author suggested a simple algorithm [3] for finding all closed
sets of a given closure operator ϕ on a (finite, linearly ordered) set G. One starts
with the closure A := ϕ(∅) of the empty set and then repeats the procedure
shown in Figure 2, using the output of each application as the input of the
next one, until it returns ⊥. The algorithm is extremely useful for browsing and

for all g ∈ G in reverse order do
if g ∈ A then A := A \ {g}
else

B := ϕ(A ∪ {g})
if g is the smallest element of B \A then return B

return ⊥.

Fig. 2. The Next closure algorithm, from [4]

navigating in closure systems. And since it is so simple, many variations and
generalizations have been invented, see [4].

It is easy to generalize the algorithm to closure operators on complete lattices,
not only powerset lattices. It therefore seems natural to ask if a modification of
Next closure can be used for generating all images of any given idempotent,
monotone, and tensive function. Unfortunately, the answer is “no”, unless some
additional information is provided. Our pessimism is prompted by the following
example:

Example 4. Let A ⊆ L be an antichain in a complete lattice (L,≤), let 0L and
1L be the least and the greatest element of (L,≤), and let f be an element of
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A. The function

ϕ(x) :=





f if x = f

1L if a < x for some a ∈ A
0L else

is idempotent, monotone, and tensive.

In this example it is tedious to determine the fixed points by repeated invocation
of ϕ. Since the number of antichains may be exponential6 in the size of L, but
nevertheless may be large on average, it seems difficult to find an algorithm
which determines the fixed point f reasonably fast. Stronger assumptions are
needed.

Proposition 8. Let (L,≤) be a complete lattice, let ϕ : L → L be a monotone
and idempotent function and let G ⊆ L be a finite set that is join-dense in the
complete lattice formed by the images of ϕ. Endow G with an arbitrary linear
order.

Compute a sequence of sets, starting with A := {g ∈ G | g ≤ ϕ(∅)}, and then
repeatedly invoking the algorithm in Figure 3, always using the previous output
as the next input, until ⊥ is reached. For each set B in this sequence, ϕ(

∨
B) is

a fixed point of ϕ, and all fixed points occur exactly once.

for all g ∈ G in reverse order do
if g ∈ A then A := A \ {g}
else

B := {h ∈ G | h ≤ ϕ(
∨

(A ∪ {g}))}
if g is the smallest element of B \A then return B

return ⊥.

Fig. 3. The Next fixed point algorithm

Proof. Each fixed point f of ϕ is uniquely determined by its projection

Π(f) := {g ∈ G | g ≤ f}

to the join-dense set G, because it can be obtained as the join of these elements:
f = ϕ(

∨
(Π(f))) (recall from Proposition 3 that S 7→ ϕ(

∨
S) is the join opera-

tion in the fixed point lattice). These projection sets form a closure system on
G, for which F 7→ Π(ϕ(

∨
F )) is the closure operator. ut

6 For example, the Dedekind numbers in case that L is a powerset lattice.
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Fig. 4. A formal context and its concept lattice. Of its 66 embedded complete lattices,
20 are complete sublattices.

Example 5. We illustrate our findings by calculating the closed relations of the
formal context in Figure 4. Closed relations are subrelations with the property
that every formal concept of the subrelation is a formal concept of the original
formal context [5]. They are in 1-1-correspondence with the complete sublattices
of the concept lattice. The formal context has 20 closed relations, 18 of which
are shown in Figure 5. The two missing ones are the empty relation and the
full incidence of the formal context itself. Note that these relations (including
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Fig. 5. The non-trivial closed relations of the formal context in Figure 4

the trivial ones) are not closed under intersection nor under union. The union
of relations R1 and R2 is not closed, nor is the intersection of R3 and R4 closed.
However, when ordered by set inclusion ⊆, these 20 relations form a complete
lattice which is isomorphic to the lattice of all complete sublattices. This lattice
of closed relations is contained in the lattice (P({a, b, c, d} × {1, 2, 3, 4}),⊆) of
all relations between these two sets as a suborder, but not as a sublattice.

162 Bernhard Ganter



The closed relations R1, R2, R3, R4, and R12 are of the form A×B for some
nontrivial formal concept (A,B) and represent the complete sublattice with ex-
actly one nontrivial element. These are the join-irreducible closed relations. To-
gether, they form a join-dense set. For reasons that become clear later we reverse
the order and work with

G := {R12 < R4 < R3 < R2 < R1}.
The function ϕ will be given by eight implications, five of which are of the

form X → X. Three more are derived from the condition that a sublattice must
be closed under join and meet. So ϕ := ϕ̂L for

L := {R1 → R1, R2 → R2, R3 → R3, R4 → R4, R12 → R12}
∪ {R1 ∪R2 → R4, R1 ∪R3 → R4, R2 ∪R3 → R4}.

If Algorithm 3 is used for this operator ϕ and is started with the empty relation,
it produces all closed relations in the order of Figure 5, terminating with the full
incidence relation of the context in Figure 4.

We give one intermediate step of the algorithm in detail, namely the step
from R2 to R3:

R2 contains none of the other relations in G, so the Next fixed point
algorithm is invoked with A := {R2}. The largest element of G is R1, which
is not in A, so B := {h ∈ G | h ≤ ϕ(

∨
(A ∪ {R1}))} must be computed.

A ∪ {R1} = {R1, R2}, and the join
∨

is the union
⋃

of relations. We obtain∨
(A ∪ {R1}) = R1 ∪ R2, which is not a closed relation. But L contains three

implications the premise of which is contained in R1 ∪ R2, and we find that
ϕL(R1 ∪ R2) = ϕ(R1 ∪ R2) = R1 ∪ R2 ∪ R4 = R7 and, since R7 contains
no further elements of G, B = {R1, R2, R4}. However, R1 is not the smallest
element of B \ A (the smallest element is R4), so this iteration step does not
return a result. The next iteration has A = {R1} and g = R1, so R1 is simply
removed from A. Then A = ∅ and g = R3 result in B = {R3}, which is returned
as the next closed relation.

For this particular example, the set of all 20 sublattices of the lattice in
Figure 5 is easily determined by hand. In general, a concept lattice can be much
larger than its formal context. Working with the formal context then may be
more efficient.

How to find a join-dense set, as it is required in Proposition 8 ? There is an easy
answer when the function ϕ is given by implications.

Proposition 9. Let ϕ := ϕ̂L for some set L of implications. Then the set

{ϕ(a) | a→ b ∈ L}
is join-dense in the lattice of fixed points of ϕ.

Proof. Any fixed point of ϕ̂L by definition also is a fixed point of ϕL. So if
ϕ̂L(f) = f then

f = ϕL(f) =
∨
{a ∨ b | a ≤ f, a→ b ∈ L}.
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But since a ∨ b ≤ ϕ(a) whenever a→ b ∈ L, we get that f =
∨{ϕ(a) | a→ b ∈

L, a ≤ f}, which proves the claim. ut

Example 6. The set L in Example 3 consists of four implications, and we get

{{a}, {b}, {b, c, d}, {a, b, c}} = {ϕ̂L({a}), ϕ̂L({b}), ϕ̂L({b, c, d}), ϕ̂L({a, b})}

as a join-dense set according to Proposition 9. However, {a, b, c} is not join-
irreducible, because the supremum of {a} and {b} is, using Proposition 3,

ϕ̂L({a} ∨ {b}) = ϕ̂L({a} ∪ {b}) = ϕ̂L({a, b}) = {a, b, c}.

5 Discussion

Apart from closure and kernel systems, there are many “lattices of sets”, i.e.,
families of sets which form complete lattices, when ordered by set inclusion. More
generally we have studied subsets of arbitrary complete lattices which, endowed
with the induced order, are complete lattices themselves. We have shown that
each such complete lattice can be described by a set of implications, in a way
which is very similar to the standard one in Formal Concept Analysis. The Next
closure algorithm can be tweaked to work with this representation, so that we
were able to give an algorithm for generating such lattices.

The reader may wonder why we did not use the even more general operator

x 7→
∨
{b | a ≤ x, a→ b ∈ L}, x ∈ L,

which also is monotone. But such operators are no longer tensive in general, not
even increasing. Actually, it is easy to see that every monotone function ϕ can
so be represented (choose L := {a → ϕ(a) | a ∈ L}). Such operators are more
difficult to handle, and we see no possibility of using LinClosure here. But
the fixed point sets of such functions describe the same as we have treated with
tensive functions: all embedded complete lattices.

Much more important is the question if embedded complete lattices have
a natural and useful interpretation. The work of Shmuely [8] gives interesting
hints. Her u−v-connections generalize Galois connections and are closely related
to what we construct. One might hope that these can be derived from formal
contexts with additional, meaningful structure.
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Abstract. 8M is an old but nowadays virtually unknown algorithm for
Boolean matrix factorization. In this paper, we provide a detailed anal-
ysis of 8M. We demonstrate by experiments that even though the algo-
rithm uses a limited insight into the decomposition problem, its perfor-
mance is reasonably good even from today’s perspective. We analyze all
the steps involved in 8M, provide a first complete description of 8M, and
the relationships of 8M to the main currently available factorization algo-
rithms. It turns out that 8M involves certain interesting concepts, which
are not exploited by the current algorithms. We discuss the prospect of
these concepts and, furthermore, propose an enhancement of 8M which
is based on the current understanding of Boolean matrix factorization
and significantly improves the performance of the original 8M.

1 Introduction

1.1 The Goal of this Paper

In the past decade or so, considerable research has been devoted to Boolean
matrix factorization (BMF, called also Boolean matrix decomposition). This re-
search has resulted in various new methods of analysis and processing of Boolean
data and has also contributed to our understanding of Boolean (binary, yes/no)
data as regards foundational aspects. A vast majority of the respective research
contributions has been devoted to the design of factorization algorithms, which
is also the subject of our paper. To name some of the best-known algorithms
(more detailed information about some of these algorithms is provided in the
subsequent sections), let us recall Tiling [9], the nowadays classic Asso [13],
GreConD [3], Hyper [19], PaNDa [11], GreEss [5], and various modifications
of these algorithms and modifications of the factorization problems discussed in
the above-mentioned papers, as well as in [4,10,12,14,16,18].

Interestingly, there exists an old BMF algorithm, namely the 8M algorithm,
which is virtually unknown in the present research on BMF. This fact is remark-
able particularly in view of our experimental evaluations which demonstrate that
the 8M algorithm performs reasonably well even from today’s perspective. We
learned about this algorithm from Hana Řezanková who used it in her vari-
ous works on comparison of various clustering and factorization methods; see
e.g. the references in [2]. Even though the performance of 8M may be partially
assessed from those works, the principles of 8M have never been discussed in
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ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
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the literature. The goal of this paper is threefold. First, we provide a complete
description of the 8M algorithm, including its pseudo-code and the description
of its principles from today’s perspective. Second, we propose an improvement
of the 8M algorithm, which turns out to improve its performance reasonably.
Third, we utilize one of the principles of 8M to enhance the performance of two
standard algorithms. Note at this point that we discussed the 8M algorithm in
our yet unpublished paper [6] in which we were solely interested in one particular
property of this algorithm which we exploited in [6]; the present description is
complete and comprehensive compared to the one presented in [6].

1.2 Basic Notions

The set of all n × m Boolean matrices shall be denoted {0, 1}n×m and the
particular matrices by I, J , and the like. An input matrix I shall primarily be
interpreted as an object-attribute incidence matrix (hence the symbol I). That
is, the entry Iij corresponding to the row i and the column j is either 1 or 0,
indicating that the object i does or does not have the attribute j, respectively.
The ith row and jth column vector of I is denoted by Ii and I j , respectively.
In BMF, one generally attempts to find for a given I ∈ {0, 1}n×m matrices
A ∈ {0, 1}n×k and B ∈ {0, 1}k×m for which

I (approximately) equals A ◦B, (1)

where ◦ is the Boolean matrix product, i.e. (A ◦ B)ij = maxkl=1 min(Ail, Blj).
A decomposition of I into A ◦ B may be interpreted as a discovery of k factors
that exactly or approximately explain the data: Interpreting I, A, and B as
object-attribute, object-factor, and factor-attribute matrices, model (1) reads:
The object i has the attribute j if and only if there exists factor l such that l
applies to i and j is one of the particular manifestations of l. The least k for
which an exact decomposition I = A ◦ B exists is called the Boolean rank (or
Schein rank) of I. The approximate equality in (1) is assessed in BMF by means
of the metric E(·, ·), defined for C,D ∈ {0, 1}n×m by

E(C,D) =
∑m,n
i,j=1 |Cij −Dij |. (2)

The following particular variants of the BMF problem, relevant to this paper,
are considered in the literature.

– Discrete Basis Problem (DBP, [13]):
Given I ∈ {0, 1}n×m and a positive integer k, find A ∈ {0, 1}n×k and B ∈
{0, 1}k×m that minimize E(I, A ◦B).

– Approximate Factorization Problem (AFP, [3]):
Given I and prescribed error ε ≥ 0, find A ∈ {0, 1}n×k and B ∈ {0, 1}k×m
with k as small as possible such that E(I, A ◦B) ≤ ε.

These problems reflect two important views of BMF: DBP emphasizes the im-
portance of the first few (presumably most important) factors; AFP emphasizes
the need to account for (and thus to explain) a prescribed portion of data.
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In general, the committed error E(I, A ◦B) has two parts, namely

E(I, A ◦B) = Eu(I, A ◦B) + Eo(I, A ◦B), (3)

where Eu(I, A ◦ B) = |{〈i, j〉 | Iij = 1 and (A ◦ B)ij = 0}| and Eo(I, A ◦ B) =
|{〈i, j〉 | Iij = 0 and (A ◦ B)ij = 1}| are the so-called undercovering error and
overcovering error, respectively, which view shall be used below.

2 8M Described

2.1 History of 8M

The 8M method is one of the many data analysis methods available in an old
and widely used statistical software package known as BMDP. The acronym
“BMDP” stands for “Bio-Medical Data Package” (some sources say “BioMeDical
Package”). The package was developed primarily for biomedical applications
since the 1960s at the University of California in Los Angeles (UCLA) under
the leadership of W. J. Dixon.1 BMDP was originally available for free, later
through BMDP Statistical Software, Inc., and then by its subsidiary, Statistical
Solutions Ltd. As of 2017, BMDP is no longer available.2

BMDP and its methods are described in several editions of manuals, starting
with a 1961 manual of BMD, a direct predecessor of BMDP. In our description of
8M, we use the 1992 edition [7], which accompanies release 7 of BMDP. There,
8M is described in chapter “Boolean factor analysis” on pp. 933–945, written
by M. R. Mickey, L. Engelman, and P. Mundle, and in appendix B.11 on pp.
1401–1403.

The 8M method has been added to BMDP in the late 1970s: It was not part of
the 1979 manual but it is part along with other new methods in the next version,
whose revised printing appeared in 1983. According to this edition, 8M is based
on research done by the statistician M. Ray Mickey of the UCLA, was designed
by Mickey with contributions from Laszlo Engelman, and was programmed by
Peter Mundle and Engelman.3

2.2 Description of the Method

Even though the description of 8M in [7] is fairly detailed, certain parts are
somewhat unclear, both as to the procedural details and the rationale of vari-
ous steps. As to the procedural details, we therefore examined the step-by-step

1 The package grew out from an older computer program BIMED, which was devel-
oped for biomedical applications, and was first called BMD. Since the implemented
methods allowed a parameterized format, the letter “P” was added. Later, “P” was
interpreted as standing for “Package.”

2 We crosschecked our implementation against the version of BMDP we purchased in
2015 from Statistical Solutions Ltd.

3 The references of the BMDP manual include some papers by Mickey but none of
them concerns 8M and Boolean factor analysis.
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program behavior on various data to figure out the unclear parts until our own
implementation yielded the same results as the software which we purchased
from Statistical Solutions Ltd. As to the rationale, we provide our explanation
of the particular steps of 8M below.

Basic Idea We first describe the basic idea of 8M. The algorithm takes as its
input four parameters: an n × m Boolean matrix I (object-attribute matrix),
a number k of desired factors, and two auxiliary parameters, a number init of
initial factors, and a number cost used to refine the factors being computed. The
desired output consists of n × k and k ×m Boolean matrices A (object-factor
matrix) and B (factor-attribute matrix).

The algorithm starts by computing init initial factors. Then the algorithm
iteratively computes new factors until k desired factors are obtained. The way
8M computes the factors is very different from the current BMF algorithms
in two respects. First is the very way of generating a new factor. Second is
the fact that the previously generated factors are revisited and dropped. The
corresponding procedures are described in detail below.

Even though 8M’s revisiting of the previously generated factors is done in a
straightforward manner, it represents an interesting property. Namely, while the
undercovering and overcovering error, Eu and Eo, see (3), seem symmetric, they
have a different role in the design of BMF algorithms: Due to the NP-hardness
of the various versions of the decomposition problem [17], most of the current
factorization algorithms are heuristic approximation algorithms computing the
factors one-by-one until a satisfactory factorization is obtained. Now, having
computed say k factors, the next computed factor may make the overall error
E smaller but its overcover part Eo never decreases (hence the decrease is E
is due to a decrease in Eu). Put another way, while committing the Eu error
may be repaired by adding further factors, committing the Eo error will never
be repaired by adding further factors and must thus be carefully considered.
Revisiting and possibly dropping some of the previously generated factors is a
natural procedure to cope with this problem as it makes it possible to repair the
Eo error. From this perspective it is interesting to note that while the current
algorithms producing general factorization, such as Asso or PaNDa, do not use
any kind of revisiting, the old 8M already used this idea.

Detailed Description and Pseudocode of 8M (algorithm 1) To compute n × k
and k ×m Boolean matrices A and B form the given n×m Boolean matrix I,
the prescribed number init of initial factors, the desired number k of factors, and
the parameter cost , the algorithm 8M (algorithm 1) proceeds as follows. First,
init initial factors are computed (l. 1) as explained below. Note at this point
that by default, init = k− 2 but init is generally set by the user. The variable f
storing the number of the currently computed factors is set accordingly (l. 2). The
matrices A and B are then refined (l. 3) by the procedure RefineMatricesAB
described below. The algorithm then enters a loop (l. 5–17) whose purpose is
to add new factors and remove some of the previously generated ones until the
desired number k of factors is reached for the second time or all 1s in I are covered
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Algorithm 1: 8M

Input: Boolean n×m matrix I, desired number of factors k, number init of
initial factors, number cost

Output: Boolean matrices A and B

1 B ← ComputeInitialFactors(init); A← 0n×init

2 f ← init
3 RefineMatricesAB(A,B, I, cost)
4 kReached← 0
5 while kReached < 2 or I ≤ A ◦B do
6 foreach 〈i, j〉 do if Iij > (A ◦B)ij then ∆+

ij ← 1 else ∆+
ij ← 0

7

8 add column j of ∆+ with the largest count of 1s as new column to A
9 add row of 0s as new row to B and set entry j of this row to 1

10 f ← f + 1
11 RefineMatricesAB(A,B, I, cost)
12 if another two new factors were added then
13 remove column A (f−2) from A and row B(f−2) from B
14 f ← f − 1
15 RefineMatricesAB(A,B, I, cost)

16 end
17 if f=k then kReached← kReached + 1

18 end
19 return A,B

by A ◦B, i.e. Iij ≤ (A ◦B)ij for all i, j holds (l. 5). Whenever a factor is added
or removed, A and B are refined. Adding and removing factors is performed
according to the following scheme. One starts with f = init factors, adds two
factors so that f + 2 factors are obtained, then removes the factor generated
two steps back, i.e. the fth factor, adds another two factors, removes a factor
generated two steps back, and so on. Hence, starting with init = 2 factors, one
successively obtains 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 7, 6, 7, 8, etc. factors. One stops
when the desired number k of factors is obtained the second time. For instance, if
k = 6 one computes the sequence 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6 of factors and the last
six factors are the final factors output by the algorithm (provided the algorithm
does not stop due to the second condition in l. 5).

The initial factors are computed by ComputeInitialFactors (algorithm 2)
as follows. First, an m ×m matrix C is computed in which Cij = 1 iff column
i is included in column j in I (i.e. Iqi ≤ Iqj for each q). One then goes through
the rows i of C, i = 1, 2, . . . , and adds them as new rows of B until init rows
have been added: row i of C is added to B provided there exists j with Cij = 1
such that no row previously added to B contains 1 at position j.

Initialization of the factors is a key step in 8M in that the quality of the
computed factorization depends on it. Below we propose a new way to initialize.
At this point, let us point out an interesting observation. Computing the asso-
ciation matrix in the Asso algorithm is a kind of initialization. In particular,
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Algorithm 2: ComputeInitialFactors

Input: n×m Boolean matrix I and the number of initial factors init
Output: init ×m Boolean matrix B

1 C ← m×m Boolean matrix with all entries equal to 0
2 foreach Cij do
3 if I i ≤ I j and |I i| > 0 then
4 Cij ← 1
5 end

6 end
7 remove all duplicate and empty rows from C
8 f ← 0
9 foreach row i ∈ 1, . . . ,m of matrix C do

10 if row Ci has entry j for which Cij = 1 and Ckj = 0 for all k < i then
11 f ← f + 1
12 add row Ci as a new row to B

13 end
14 if f = init then
15 return B
16 end

17 end

the vectors of the association matrix serve as the candidate B-parts of factors.
Now, it is easy to observe that to select the rows of the association matrix, Asso
uses basically the same strategy as 8M, only more general. Where 8M tests in-
clusion of columns i and j (l. 3 of algorithm 2), Asso tests whether the degree
of partial inclusion of column i in column j exceeds a user-specified threshold τ
(or whether the confidence of the association rule {i} ⇒ {j} exceeds τ in terms
of Asso). Setting τ = 1 would yield the same vectors in the association matrix
of Asso as what 8M uses as the initial factors. Even though we do not explore
this observation in this paper, is shall be explored further.

Algorithm 3: RefineMatricesAB

Input: Boolean matrices A, B, I, number cost

1 repeat
2 RefineMatrixA(A,B, I, cost)
3 RefineMatrixB(A,B, I, cost)

4 until loop executed 3 times or A and B did not change

Refining of A and B by RefineMatricesAB (algorithm 3) consists in per-
forming a cycle until A and B do not change but at most three times, in which A
is computed from I, B, and the parameter cost by a so-called Boolean regression
described in RefineMatrixA (algorithm 4), followed by computing symmetri-
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cally B using RefineMatrixB. A new factor is computed in l. 6–8 of 8M by
computing first the positive part ∆+ of the discrepancy matrix ∆ = I −A ◦B,
one adds to A as new column the column j of ∆+ containing the largest number
of 1s, and adds to B a row of 0s with 1 at position j. For space reasons, we do
not describe the meaning of Boolean regression further here; it shall be described
in an extended version of this paper.

Algorithm 4: RefineMatrixA

Input: Boolean matrices A, B, I and cost

1 foreach row i ∈ {1, . . . , n} do
2 y ← Ii ; Z ← B; Ai ← 0
3 repeat
4 foreach factor l ∈ 1, . . . , f do
5 ml ←

∑m
j=1 yj · Zlj − cost ·∑m

j=1(1− yj) · Zlj

6 end
7 select p for which mp = maxlml

8 if mp > 0 then
9 Aip ← 1

10 foreach j ∈ {1, . . . ,m} do
11 if Zpj = 1 then
12 Z j ← 0; yj ← 0
13 end

14 end

15 end

16 until mp > 0

17 end

3 Experimental Evaluation

3.1 Datasets and Algorithms

Our evaluation involves the real-world datasets Apj [8] (2044 × 1164, density
0.003), DNA [15] (4590×392, density 0.015), Emea [8] (3046×35, density 0.068),
Chess [1] (size 3196× 76, density 0.487), Firewall 1 [8] (365× 709, 0.124), Fire-
wall 2 [8] (325 × 590, 0.190), Mushroom [1] (8124 × 119, 0.193), and Paleo4

(501 × 139, density 0.051) well known and commonly used in the literature on
BMF. Note that size refers to the number of objects × number of attributes and
that density is the percentage of the entries with 1 of the dataset. Moreover,
we used two collections, X1 and X2, of synthetic datasets. Each collection in-
cludes 1000 randomly generated matrices obtained as Boolean products A ◦ B
of 1000×40 and 40×500 matrices A and B which are randomly generated. The

4 NOWpublic release 030717, available from http://www.helsinki.fi/science/now/.
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average densities of datasets included in X1 is 0.15. In case of X2, the aver-
age densities are 0.2. An extended version shall contain more datasets but the
present results are representative of the algorithms’ behavior.

We used in the experimental evaluation the algorithms: Tiling, Asso, Gre-
ConD, Hyper, and PaNDa (see section 1).

3.2 Evaluating 8M and Its Improved Version 8M+

In our evaluation, we use the so-called coverage c of the input data I by the
first l computed factors, i.e. the n × l and l ×m matrices A and B, defined by
c(l) = 1−E(I, A ◦B)/|I|, in which |I| is the number of 1s in I. For 8M we used
the default recommendation cost = 1 and used various values for init .

Fig. 1 presents a comparison of the selected current BMF algorithms with the
8M method. The graphs depict the coverage c(l) of the first l factors generated
by the algorithms. One may observe that 8M compares fairly well with the
current algorithms. It even outperforms PaNDa on all these datasets and on
most of those we experimented with. On some data, 8M outperforms Asso and
very often it outperforms Hyper in its coverage by the first few factors.

Fig. 2 presents a comparison of the basic 8M algorithm with its enhanced ver-
sion denoted 8M+, which consists in a simple improvement of the initialization
step of 8M. Namely, since the purpose of initialization in 8M is to obtain some
reasonably good factors and since the initialization of 8M is rather simplistic, we
exploited the very fast strategy of the GreConD algorithm to compute the first
init factors. These have the additional advantage of committing no overcovering
error. One may observe from the graphs that the improvement is significant.
Moreover, taking into account Fig. 1, one can see that this improvement makes
the new algorithm an interesting rival to the current algorithms.

3.3 Evaluating the Improvement of GreConD Inspired by 8M

It turns out that the idea of revisiting the previously generated factors may eas-
ily be implemented in one of the currently best BMF algorithms, GreConD,
and yields a significant improvement as regards exact and almost exact factor-
izations. In our modification of GreConD, we revisit—every time a new factor
is generated as in the original GreConD—the previously generated factors. If
removal of a factor under consideration would result in an increase in the error
E not larger than p × |I|, where p is a parameter, we removed the factor. In
Table 1, the columns represent the original GreConD and its modifications for
p = 0, 0.01, . . . , 0.05, the rows labeled “k” represent the number of factors ob-
tained by the particular algorithm on the given dataset, and the row labeled “c”
contains the coverage of the computed factorization. Thus, for instance, when
factorizing the Mushroom data, the original GreConD needs 120 factors to ob-
tain exact factorization. Our modification with p = 0 requires only 113 factors
for exact factorization and only 61 factors for computing a highly accurate fac-
torization, namely with coverage 0.951. Since such behavior is typical, we find it
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Fig. 1: Coverage quality of the first l factors on real and synthetic data.
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Fig. 2: Coverage quality of the first l factors on real data: 8M vs. 8M+.
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very interesting and find the idea of revisiting factors worth further exploration.
Note that we did similar improvements with similar effects to Asso.

Table 1: Improvements to the GreConD algorithm

Dataset orig. 0 0.01 0.02 0.03 0.04 0.05

Emea k 42 34 29 26 25 24 23
c 1.000 1.000 0.992 0.981 0.975 0.963 0.956

Chess k 124 119 72 62 55 51 47
c 1.000 1.000 0.991 0.981 0.970 0.962 0.952

Firewall 1 k 66 65 17 10 8 7 6
c 1.000 1.000 0.990 0.981 0.972 0.964 0.953

Firewall 2 k 10 10 4 4 4 4 3
c 1.000 1.000 0.998 0.998 0.998 0.998 0.958

Mushroom k 120 113 81 73 69 65 61
c 1.000 1.000 0.990 0.980 0.970 0.960 0.951

4 Conclusions

In addition to the fact that a description and detailed experimental evaluation of
8M were long due, we believe that the most interesting finding for future research
is the property of 8M to revisit and possibly drop the previously computed fac-
tors. This idea is appealing particularly for algorithms performing general BMF,
i.e. those committing overcovering error because, unlike the symmetric under-
covering error, overcovering error can only increase if an algorithm does not
revisit and modify the previously computed factors. Our straightforward imple-
mentation of this idea to GreConD and Asso yields an improvement which
represents a promising sign of a usefulness of this idea, which hence needs to
be further explored. Another topic worth further investigation is the regression
procedure of 8M. While we described how it works, it is not yet properly under-
stood why this procedure, which is analogous to statistical regression, actually
works and delivers reasonable results.
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Abstract. Decomposition of matrices over some finite scale received
a considerable attention in data mining research. The methods that per-
form such decomposition can be viewed as an implementation of factor
analysis. Surprisingly, the main motivation that is behind the factor anal-
ysis, the interpretation of the factors, is given only a very small amount
of attention, or is completely neglected, in current research. In this paper,
we are arguing that the interpretation of factors is an important part of
matrix decomposition and we propose a novel measure, based on simple
structure from factor analysis, enabling the intererability measurement.
Furthermore, we present an experimental evaluation of selected decom-
position algorithms via our metric.

1 Motivation

Decomposition of matrices over some finite scale—especially a case where the
scale contains only two elements, namely zero and one, called the Boolean ma-
trix decomposition—has become one of the standard methods in data mining
with applications to many fields. In a broad sense, these methods may be con-
sidered as implementing the general idea of classical factor analysis introduced
by psychologist Charles Spearman [16].

The motivation for the factor analysis comes from the psychology and the
social sciences. The general aim is to simplify complex data. More precisely to
describe original data via new more fundamental variables called factors.

Boolean matrix decomposition (BMF) and in general the decomposition of
matrix over some finite scale, always reflects the ideas of factor analysis. This
is not surprising, because BMF also comes from the psychology, where Boolean
data often occur (see e.g. [7]). On the other hand some aspects of factor analysis
are neglected in contemporary literature including matrix decomposition meth-
ods, namely the quality of factors. In factor analysis, the quality of factors, more
precisely the interpretability of factors, is on the first place.

The current direction of research focuses on creating new algorithms and
evaluating their quality in relation to the number of factors and the size of the
input data covered. If an analysis of factor interpretability is contained, it is
done by hand on a small number of datasets. The main reason is that the in-
terpretation of factors is subjective and very tedious. In addition, contemporary
literature lacks a uniform methodology or a metric to measure the interpretabil-
ity of factors.
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The purpose of this paper is twofold. We argue that the interpretation of
factors, which is often neglected, is important part of matrix decomposition
method; and we propose a new measure, based on the simple structure from
factor analysis, enabling an objective measurement of the interpretability of
factors.

The main reason why we chose a simple structure as a criterion for the
interpretability of factors is the historical interdependence of factor analysis and
matrix decompositions. Simple structure is therefore the first choice, and for
this reason this work should be seen as the first small step in the new field of
research.

The rest of the paper is organized as follows. In the following Section 2 we
provide a brief overview of current research involving matrix decomposition from
the factor interpretation standpoint. Moreover, we describe in Section 2 basic
approach to the factors interpretation in factor analysis. Then, in Section 3 basic
notions, notation and formalization of the metric are presented. The metric is
experimentally evaluated in Section 4. Section 5 draws a conclusion and future
research direction.

2 Interpretation of Factors

2.1 Lost in the Flood of Algorithms

The current direction of matrix decomposition research focuses primarily on
the production of new algorithms and improving existing ones. An overview of
existing approaches and methods is beyond the scope of this paper (see e.g. [5,18]
which provides comparison of the most commonly used algorithms). The factors
interpretation has only a small amount of attention or it does not perform at
all. Note that this is indeed a feature of contemporary research. Early works
involving matrix decomposition usually contain a larger assessment—usually the
analysis of the factors of one particular dataset—of factor interpretability.

One of the few exceptions is the work [4] that deals with the extensive detailed
analysis of factors. However, this analysis is done manually. Works involving
matrix decomposition do not contain any methodology or metrics to measure
the interpretability of factors. This is very surprising, especially because these
methods are inspired by classical factor analysis, where the interpretability of
factors and its measurement is an elementary concept.

2.2 Good Factors Definition and Metric

In classical factor analysis, the question of whether the factor is good or bad is
based on the law of parsimony, well known as Occam’s razor, i.e. we should pick
the simplest explanation of facts. A solution, which is selected via the parsimony
law, is called simple structure.

In 1947 Thurstone proposed five simple criteria of simple structure in his
work [17]. These can be seen as informal, vague and verbally described definition
of good factors. Thurstone’s criteria were as follows:
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1. Each row of the rotated matrix should contain at least one zero.
2. In each factor the minimum number of zero loadings (see Section 3.2) should

be the number of factors in the rotation.
3. For every pair of factors there should be variables with zero loadings on one

and significant loadings on the other.
4. For every pair of factors a large portion of the loadings should be zero, at

least in a matrix with a large number of factors.
5. For every pair of factors there should be only a few variables with significant

loadings on both factors.

Two of these criteria, namely 3 and 5 are of overriding importance. Essen-
tially, the criterion of simple structure is a factor matrix in which the factors
each have a few high loadings.

Later in 1978, Cattell in [9], who continues in the Thurstone’s work, argued
that the simple structure factors are usually simple to interpret. There have
been many attempts to formalize the simple structure (see e.g. [8]). The result
of these attempts is an ad hoc formalization and a conclusion that there will
never be a simple formula describing Thurstone’s five criteria. Unfortunately,
these approaches cannot be adopted in the case of decomposition of matrices
over some finite scale, because they use a different calculus.

On the other hand, this kind of data can be handled using fuzzy logic. More-
over, in case of data over some finite scale, all Thurstone’s criteria can be formal-
ized via logical formulas. In the following section we will use the fuzzy logic to
formalize Thurstone’s criteria and create a metric allowing an objective analysis
of factor interpretability.

3 Formalization of Metric

3.1 Basics from Fuzzy Logic

Fuzzy logic has been employed to handle the concept of partial truth, where
the truth value may range between completely true and completely false. This
approach has been proven to be useful in several areas and we refer to [1].

Let us consider a set L of truth values. We assume that this set is par-
tially ordered (partial ordering is denoted by ≤), contains a least element 0 and
a greatest element 1.

Let a and b are the truth degrees from L, then in L exists a truth value
which is greater than both a and b. The least element that is greater or equal to
both a and b is called supremum of a and b. Analogously, we can define infimum
of a and b—the greatest element from L which is smaller or equal to both a
and b. We define the lower cone of A by L(A) = {a ∈ L|a ≤ b for all b ∈ A}
and the upper cone of A by U(A) = {a ∈ L|b ≤ a for all b ∈ A}. If L(A) has
a greatest element a, then a is called the supremum of A (denoted

∨
A) and

dually if U(A) has a least element a, then a is called the infimum of A (denoted∧
A). In particular, we assume that the partial order ≤ makes L a complete

lattice [12] (i.e., arbitrary infima
∧

and suprema
∨

exist in L). This assumption
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is automatically satisfied if L is a finite chain (i.e. a ≤ b or b ≤ a for every
a, b ∈ L), in which case a ∧ b = min(a, b) and a ∨ b = max(a, b). We also need
to define a logical conjunction operation (denoted by ⊗). We assume that ⊗ is
commutative, associative, has 1 as its neutral element (a⊗ 1 = a = 1⊗ a), and
distributes over arbitrary suprema, i.e. a⊗ (

∨
j∈J bj) =

∨
j∈J(a⊗ bj). This leads

to if a and b are truth degrees of propositions p1 and p2, then a⊗ b is the truth
degree of proposition “p1 and p2”.

Importantly, ⊗ induces another operation, →, called the residuum of ⊗,
which plays the role of the truth function of implication and is defined by

a→ b = max{c ∈ L | a⊗ c ≤ b}.

Residuum, which may be looked at as a kind of division, satisfies an important
technical condition called adjointness:

a⊗ b ≤ c iff a ≤ b→ c,

which is also utilized below. This leads to algebraic structures called residuated
lattices.

3.2 Basic Notions of Matrix Decomposition

In general, matrix decomposition aims at whether data involving objects and
their directly observable attributes may be explained by a smaller number of
different, more fundamental attributes called factors. For example, whether per-
formances of students (directly observable attributes) may be described by some
treats of their intelligence (factors). Formally, the input data is represented by an
n×m object–attribute matrix I and the “explanation” means a decomposition

I = A ◦B. (1)

(exact or approximate) of I into a product A◦B of an n×k object–factor matrix
A—called a score matrix in the factor analysis terminology—and a k×m factor–
attribute matrix B—called a loading matrix in the factor analysis terminology.
What kind of matrices (real, Boolean, or other) and what kind of product ◦ are
involved determines the semantics of the factor model.

In this paper, we are mainly focused on the decomposition of matrices con-
taining grades of certain scales L with the sup-⊗ product. In particular, the
matrix entry Iij is a degree to which attribute j applies to object i. Similarly,
Ail and Blj are the degrees to which factor l applies to object i and the degree to
which attribute j is a (one particular) manifestation of factor l. The case where
the scale L contains only two degrees (0 and 1), is called the Boolean matrix
decomposition.

Equation (1) has the following meaning. Object i has attribute j if and only
if there exists factor l such that i has l (or, l applies to i) and j is one of the
particular manifestations of l. The meaning can be described by the formula
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(A ◦B)ij =
∨k
l=1Ail ⊗Blj ,

Let us note, in the Boolean case (L = {0, 1}), the meaning of equation (1)
may be described via formula

(A ◦B)ij =
k

max
l=1

min(Ail, Blj).

There exist two concrete variants of the decomposition problem. These two
problems reflect two important views on matrix decomposition. The first one—
the discrete basis problem (DBP) [14]—emphasizes the importance of the first
k (presumably the most important) factors. The second one—the approximate
factorization problem (AFP) [5]—emphasizes the need to account for (and thus
to explain) a prescribed portion of data, which is specified by error ε.

The DBP and AFP problems are generally known in BMF, but both problems
can be generalized to problems over some scale L. For this purpose we need to
define closeness of matrices over L.

Let sL : L × L → [0, 1] be an appropriate function measuring closeness of
degrees in L. For matrices I, J ∈ Ln×m, put

s(I, J) =

∑n,m
i,j=1 sL(Iij , Jij)

n ·m ,

i.e. s(I, J) ∈ [0, 1] is the normalized sum over all matrix entries of the closeness
of the corresponding entries in I and J . In general, we require sL(a, b) = 1 if
and only if a = b, and sL(0, 1) = sL(1, 0) = 0, in which case s(I, J) = 1 if and
only if I = J . We furthermore require that a ≤ b ≤ c implies sL(a, c) ≤ sL(b, c).
For the important case of L being a subchain of [0, 1], sL may be defined by

sL(a, b) = a↔ b,

where a ↔ b = min(a → b, b → a) is the so-called biresiduum (many-valued
equivalence from a logical point of view) of a and b. Let us note that the closeness
coincides with the notion coverage in several papers.

The generalization of the AFP and DBP to the general decomposition over
scale L follows:

– DBP(L): Given I ∈ Ln×m and a positive integer k, find A ∈ Ln×k and
B ∈ Lk×m that maximize s(I, A ◦B).

– AFP(L): Given I and prescribed error ε ∈ [0, 1], find A ∈ Ln×k and B ∈
Lk×m with k as small as possible such that s(I, A ◦B) ≥ ε.

3.3 Interpretability Metric

We approach the formalization of Thurstone’s five criteria according to the prin-
ciples of mathematical fuzzy logic [1,12,13] as follows. We consider the factor
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model 1 and the Royce [15] definition of factor, namely “factor is a construct
operationally defined by its factor loadings”. In other words, factors are repre-
sented via attributes which are manifestation of them, i.e. factors are represented
via rows of matrix B. This is very important aspect of our metric, because we
can evaluate factors regardless of whether they do or or not contain noise—noise
is a big issue in matrix decompositions, see e.g. [14].

The following formalization of the five criteria described in Section 2.2 utilizes
operations over scale L. As far as the choice of the operations on L is concerned,
we use the  Lukasiewicz t-norm in the formalization, due to some of its intuitive
properties. We describe each criterion via single logical formula with the truth
degrees from L. The degree of fulfillment of each criterion is determined by the
degree of fulfillment of a particular formula.

3.4 Formalization of Thurstone’s Criteria

The first criterion. Each row contains at least one zero, i.e. for each factor there
exist at least one attribute which is not particular manifestation of the factor.
Formally, the first criterion can be described via formula ∀i∃j¬Bij , i.e.

(∃j¬B1j) ∧ (∃j¬B2j) ∧ · · · ∧ (∃j¬Bkj),

where (∃j¬Bij) = (¬Bi1) ∨ (¬Bi2) ∨ · · · ∨ (¬Bim).

The second criterion. In each factor, the minimum number of zero loadings
should be the number of factors, i.e. in each factor, there is at least k attributes
that are not manifestation of this factor. Formally,

∀i∃j1∃j2 . . . ∃jk(¬Bij1 ∧ ¬Bij2 ∧ . . .¬Bijk ∧ j1 6= j2 6= · · · 6= jk).

The third criterion. For every pair of factors there should be variables with zero
loadings on one and significant loadings on the other. Formally,

∀i1∀i2∃j(Bi1j ∧ ¬Bi2j) ∧ (¬Bi1j ∧Bi2j).

The fourth criterion. For every pair of factors a large portion of loadings should
be zero (at least in a matrix with large number of factors. We need to define
what the “large portion” means, i.e. how many attributes do not manifest one or
second (or both) factors. Let us denote “large portion” by lp and Bij = Bi ∪Bj
(Bi denotes row i of matrix B), than formally

∀i1∀i2∃j1∃j2 . . . ∃jlp(¬Bi1i2j1
) ∧ (¬Bi1i2j2

) ∧ · · · ∧ (¬Bi1i2jlp
) ∧ j1 6= j2 6= · · · 6= jlp.

The fifth criterion. For every pair of factors there should be only a few attributes
that manifest both factors. Similarly as in the previous case, we need to define
a “few”.

∀i1∀i2∃j1∃j2 . . . ∃jfew(Bi1j1 ∧Bi2j1) ∧ (Bi1j2 ∧Bi2j2) ∧ . . .
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· · · ∧ (Bi1jfew
∧Bi2jfew

) ∧ j1 6= j2 6= · · · 6= jfew.

The formalization via above presented logical formulas strictly says how a set
of factors satisfies each criteria, but it does not take into account how many
factors (pairs of factors) do not meet the criterion.

We can analogously define less strict measure which takes into account for
how many factors (pairs of factors) each criterion holds, i.e instead of minimum
value for each factor (pair of factors), we take mean of this values.

We denote the first variant of metric as the strict metric and the second
variant as the partially strict metric in Section 4—which provides experimental
evaluation of our metric.

4 Experimental Evaluation

The following section is devoted to the experimental evaluation of metrics de-
scribed in Section 3. We compare three algorithms for the matrix decomposition
problem, namely GreConDL [6], GreEssL [3] and AssoL [3]. The first two are
based on formal concept analysis [11]. Let us note, these algorithms provide the
decomposition of matrices over a finite scale L. All of them are inspired by the
existing BMF algorithms.

4.1 Real-World Data

Since we are interested in the interpretability of factors, we perform experiments
only on the real-world datasets—which, unlike synthetic data, are influenced by
real factors. We used the following datasets.

Dog breeds dataset represents 151 dog breeds and their 13 attributes such
as for example Playfulness, Protection ability, Affection or Ease of training. For
detailed analysis see [3].

Decathlon extends the dataset from [6] to 28 athletes and their performance
in 10 disciplines of decathlon. A detail analysis of this data can be found in [2].

IPAQ consists of international questionnaire data involving 4510 respondents
answering 16 questions using a three-element scale regarding physical activity.
The questions include those regarding their age, sex, body-mass-index (BMI),
health, to what extent the person bicycles, walks, etc. For more detail see [3].

Music [3] consists of results of a study inquiring how people perceive speed of
song depending on various song characteristics. The data consists of a 900× 26
matrix over a six-element scale L, representing a questionnaire involving 30
participants who were presented 30 music samples.

Rio dataset [18] represents 87 × 31 matrix I obtained from https://www.

rio2016.com/en/medal-count and consists of 87 countries that obtained any
medal in one of 31 sport (such as Archery, Athletics, Badminton, Basketball,
Boxing, . . . ) on Olympics games in Rio de Janeiro 2016. L contains four grades—
1 means that country won at least one gold medal, 2

3 at least silver medal, 1
3 at

least one bronze medal and 0 no medal in this sport. This dataset is very sparse
in comparison with other presented datasets.
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4.2 Assessment of the Interpretability Metric

Obtained results for each of five Thurstone’s criteria and a total value of the
simple structure are presented in Table 1 (strict measure) and Table 2 (partially
strict measure). We provide the results for sets of factors with the values of
closeness (column s) 0.75, 0.85, 0.9, 0.95 and 1 (which corresponds with the
values of coverage 75%, 85%, 90%, 95% and 100% of the input data). Value NA
means, that the particular algorithm can not obtain a prescribed coverage.

One may observe that the best results provides (in case of strict measure)
GreEssL algorithm which outperforms GreConDL and AssoLon Breeds, De-
cathlon and IPAQ. On the Music and Rio data, GreConDL produces slightly
better results than GreEssL. AssoL is not able to reach higher coverage and
usually provides worse results, but on Music and Rio data it outperforms both
GreConDL and GreEssL.

We obtain similar results for partially strict measure. For this metric Gre-
ConD and GreEss produce higher values than in the case of strict metric.
Additionally GreEssL outperforms GreConDL on IPAQ data and produces
almost identical results on Rio data. AssoL produces very similar results as in
the case of strict metric.

From Tables 1 and 2 it is obvious that the simple structure firstly fail on sec-
ond criterion especially for high closeness (in both GreConDL and GreEssL)
since usually they need more factors than the number of attributes to achieve a
prescribed coverage. AssoL is algorithm for solving DBP, usually it is not able
to obtain full coverage of input data. On the other hand, first factors obtained
by AssoL cover larger portion of data, so for example in Rio dataset we need
only one factor to obtain coverage slightly higher than 90%. This is the reason
why the total value of simple structure is equal to 1.

In [3] authors discuss problem of factor with values “around the middle”.
These factors are the reason why AssoL produces results which returns lower
values on the criteria, that depend on the number of zeros, namely criterion
1, criterion 2 and criterion 5. In these criteria GreEssL returns better factor-
ization than GreConDLon almost all of the datasets. The reason is probably
the logic behind the factor selection which particular algorithm utilizes. Unlike
GreConDL algorithm GreEssL algorithm takes into account different role of
entries, namely it utilizes the so-called essential entries [5].

Some observations that depend on data itself are for example, that Decathlon
dataset does not contain any 0 as input value, so neither GreConDL nor
GreEssLfully satisfy criterion 1. IPAQ dataset has much more objects than
attributes so we need more factors to obtain higher coverage. This is the reason
why from closeness 0.9 it fails in criterion 2.

4.3 Application to Boolean Matrix Decompostion

BMF is probably the most popular class of matrix decomposition over finite
scale—in this case the scale L contains only two elements, namely zero and one.
Factors produced by BMF algorithms can be analyzed without any problems via
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our metric. We perform several experiments and we observe how good is the set
of factors from the simple structure perspective.

There exist several algorithms for BMF based on different ideas. We used the
following algorithms: GreConD, GreEss, Asso, Hyper, PaNDa, Tiling (for
more details see e.g. [5]) and 8M [10]. Like in graded case, some of them are usu-
ally not able to achieve 100% coverage, namely Asso, PaNDa and 8M. We eval-
uate all of them on well known real data such as for example Americas-small,
DBLP, Emea, Chess and Mushroom. All of them are well known and widely used.
Description and characteristics of these datasets can be found e.g. in [5].

We present only basic observation. A broader analysis of results delivered by
BMF algorithms is left to an extended version of this paper.

In the Boolean case, the third criterion is always true. It can be understood
as: for every pair of factors, there should be an attribute which is manifestation
of one of them and is not manifestation of the other one.

The best factors in terms of above defined measures are obtained by algo-
rithm Hyper—for almost all datasets it returns value 1 (for closeness ≤ 0.95).
The main reason is that Hyper usually selects factors including only one at-
tribute. Such factors are really easy to interpret. On the other hand, this shows
a drawback of the simple structure, because such factors are not useful.

GreEss, GreConD and Tiling algorithm returns comparable results
(GreEss is slightly better than GreConD and both are slightly better than
Tiling). All of them work in the similar way (they use formal concepts [11] as
factors) and all of them do not meet the fifth criterion for high coverage.

8M, PaNDa and Asso return a set of factors which cover small amount data
(in many cases they explain less that 80% of input data). Surprisingly, factors
delivered via these algorithms produce the best results from the simple structure
standpoint.

5 Conclusion and Future Research

We proposed a novel metric, based on a simple structure from factor analysis,
for the measurement of the interpretability of factors delivered by matrix de-
composition algorithms—more precisely algorithms that provide decomposition
of matrices over some finite scale. Simple structure is defined via five criterion
which we formalized via mathematics of Fuzzy logic. We proposed two variants
of the metric, strict and partially strict and we experimentally evaluated the
results produced by GreConDL, GreEssL and AssoL algorithm. Addition-
ally we provide a brief overview of experimental evaluation of selected BMF
algorithms.

The observed results encourage us to the following future research directions.
First, to explore different ways of the interpretability measuring. Second, to
provide extensive evaluation of results produced by BMF algorithms.
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Abstract. Factor analysis of Boolean and ordinal data became a signif-
icant research direction in data analysis. In this paper we present a case
study involving a recently developed method of factor analysis of ordinal
data which uses the apparatus of fuzzy logic and closure structures. In
particular, the method uses formal concepts of the input data as factors
and is utilized in our paper to analyze British educational data. The
results of the analyses demonstrate that the method is capable of ex-
tracting natural and well-interpretable factors which provide insight into
students’ performances in tests. Our study represents an initial phase of
a project of analyzing educational data by means of relational methods.
Broader ramifications and further prospects regarding this project are
also discussed.

1 Introduction and Paper Outline

Analysis of factors in various kinds of data represents an important topic in the
domain of data analysis. The factors are thought of as hidden variables that are
more fundamental than the directly observable variables using which the given
data is described. Discovery of such factors enables one to better understand
the data as well as to reduce its dimensionality. The best known factor-analytic
methods are those designed for real-valued data and include the classical factor
analysis, the singular value decomposition, principal component analysis, and
non-negative matrix factorization; see e.g. [1,10,13,17,20]. As is well known, the
application of such methods to Boolean and ordinal data is possible in principle
but these classical methods suffer from poor interpretability when applied to such
data. In the past years, a considerable effort has been devoted to the development
of matrix methods for Boolean data; see e.g. [7,12,21,22,24] and the references
therein. In our previous papers [4,5,6,8,9], we extended the factorization problem
for Boolean data to ordinal data, which is of our main interest in this paper.
Since in a development of new data analysis methods, explorations of real-case
studies play a crucial role, our main aim in this paper is to add to our previous
studies a further case study. The analyzed data comes from examination tests
in the United Kingdom. Our efforts are part of a broader project whose goal is
to explore methods of relational data analysis for analyzing educational data.

Our paper is organized as follows. In section 2, we present our method to the
extent that both the principles as well as the user point of view are clarified.

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 191–206,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
Olomouc, 2018.



In section 3, which is the main section of this paper, we describe the data, our
selected analyses of the data, and provide discussion of the results obtained.
Section 4 concludes the paper by summarizing our results, putting our work in
context, and describing our future goals.

2 Our Method of Factor Analysis

2.1 The Basic Idea of Our Factor Model and Its Interpretation

The Factor Model We assume that the analyzed data is in the form of an n×m
matrix I describing n objects (matrix rows) and m graded attributes (matrix
columns). The matrix entries Iij contain degrees (grades, levels) from a given
scale L, such as L = {0, 1/2, 1} or L = {0, 1/4, 1/2, 3/4, 1}. The entry Iij represents
the degree to which the object i has the attribute j. Thus, Iij = 0 means that
i does not have j at all, Iij = 1 means that i has j to the full extent, and
Iij = 3/4 means that i has j to a large extent. For instance, the objects and
attributes might be students and exam tests, respectively, and the entries Iij

might represent the extents to which student i succeeded in test j. The following
is an example of a matrix I over the three-element scale:




1/2 1 1 1/2 1/2
1/2 1 1 1/2 1/2
0 1/2 1/2 1 1
0 0 1 1/2 1


 (1)

In our model, one looks for a decomposition (or, factorization) of the input
n×m object-attribute matrix I into an (exact or approximate) product

I = A ◦B, (2)

of an n × k object-factor matrix A and a k ×m factor-attribute matrix B (the
entries of both A and B are again degrees from the scale L).

The matrix product ◦ is defined by

(A ◦B)ij =
∨k

l=1 Ail ⊗Blj , (3)

where ⊗ is an appropriate aggregation function generalizing the classical logical
conjunction and

∨
is the supremum operation in the scale L (

∨
is max if L is

a chain, i.e. linearly ordered); see below for details.
To understand the meaning of this factor model, consider first its particular

case in which L = {0, 1}, i.e. the Boolean case. Then, (3) becomes

(A ◦B)ij = kmax
l=1

min(Ail, Blj) (4)

which is the well-known Boolean matrix product. Equivalently, (4) reads:

(A ◦B)ij = 1 iff there exists l ∈ {1, . . . , k} such that Ail = 1 and Blj = 1,
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from which it is immediate that the factor model has the following meaning:

object i has attribute j if and only if
there exists factor l such that i has l (or, l applies to i) (5)
and j is one of the particular manifestations of l,

which may be regarded as a verbal description of the model given by (2). Such
description is certainly appealing and well understandable.

With a general scale L, we approach the situation according to the principles
of formal fuzzy logic [2,15,16] as follows. We consider the formulas ϕ(i, l) saying
“object i has factor l” and ψ(l, j) saying “attribute j is a manifestation of factor
l”, and regard Ail as the truth degree ||ϕ(i, l)|| of ϕ(i, l), and Blj as the truth
degree ||ψ(l, j)|| of ψ(l, j), i.e.

||ϕ(i, l)|| = Ail and ||ψ(l, j)|| = Blj . (6)

Now, according to fuzzy logic, the truth degree of the formula ϕ(i, l)&ψ(l, j)
which says “object i has factor l and attribute j is a manifestation of factor l”
is computed by

||ϕ(i, l)&ψ(l, j)|| = ||ϕ(i, l)|| ⊗ ||ψ(l, j)||,

where ⊗ : L × L → L is a truth function of many-valued conjunction & (sev-
eral reasonable functions exist). Hence, the truth degree of (∃l)(ϕ(i, l)&ψ(l, j))
which says “there exists factor l such that object i has l and attribute j is a
manifestation of l”, i.e. the proposition involved in (5), is computed by

||(∃l)(ϕ(i, l)&ψ(l, j))|| = ∨k
l=1 ||ϕ(i, l)|| ⊗ ||ψ(l, j)||,

where
∨

denotes the supremum. Taking (6) into account, we see that a gener-
alization of (4) to the case of multiple degrees in L is just given by the above
formula (3). Therefore, even in presence of multiple degrees, the factor model
(2) retains its simple meaning described by (5).

Scales of Degrees and Truth Functions ⊗ and → Technically, we assume that
the grades are taken from a partially ordered bounded scale L of certain type. In
particular, we assume that L conforms to the structure of a complete residuated
lattice [14,25], used in fuzzy logic; see [15,16] for details. Grades of ordinal scales
[19] are conveniently represented by numbers, such as the Likert scale {1, . . . , 5},
which naturally appears in our experiments (see below). We assume that these
numbers are normalized and taken from the unit interval [0, 1], i.e. they form
the five-element scale L = {0, 1/4, 1/2, 3/4, 1} commonly used in fuzzy logic. In our
analyses, we use the Łukasiewicz operations on this scale, i.e. we use

a⊗ b = max(0, a+ b− 1) and a→ b = min(1, 1− a+ b),

but many other examples are available; see e.g. [15].
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2.2 Factors Utilized by Our Method

It follows from the above description that for any decomposition (2), the lth
factor (l ∈ {1, . . . , k}) is represented by two parts: the lth column A_l of A and
the lth row Bl_ of B. As shown in [4], optimal factors for a decomposition of I
(see below) are provided by formal concepts associated to I. In detail, let X =
{1, . . . , n} (rows/objects) and Y = {1, . . . ,m} (columns/attributes). A formal
concept of I is any pair 〈C,D〉 of L-sets (fuzzy sets, [14,26]) C : {1, . . . , n} → L
of objects and D : {1, . . . ,m} → L of attributes, see [3], that satisfies C↑ = D
and D↓ = C where ↑ : LX → LY and ↓ : LY → LX are the concept-forming
operators defined by

C↑(j) =
∧

i∈X(C(i)→ Iij) and D↓(i) =
∧

j∈Y (D(j)→ Iij).

The set of all formal concepts of I is denoted by B(X,Y, I) or just B(I). C(i) ∈ L
and D(j) ∈ L are interpreted as the degree to which factor l applies to object i
and the degree to which attribute j is a manifestation of factor l. Using formal
concepts as factors is optimal in the following sense [4]: Let for a set (we fix the
numbering of its elements)

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} ⊆ B(X,Y, I)

of formal concepts denote by AF and BF the matrices defined by

(AF )il = (Cl)(i) and (BF )lj = (Dl)(j).

Then whenever I = A◦B for some n×k and k×mmatrices A and B, there exists
a set F ⊆ B(X,Y, I) |F| ≤ k such that I = AF ◦BF , i.e. optimal decompositions
are attained by formal concepts as factors.

In our experiments, we use the basic greedy algorithm proposed in [8] for
computing a set F of concepts for which I = AF ◦BF ; see also [9] for computa-
tional complexity of the problem and the algorithm.

2.3 Explanation of Data by Factors

If a set F ⊆ B(X,Y, I) of formal concepts of I satisfies I = AF ◦ BF , we
intuitively regard F as fully explaining the data represented by I and call F a
set of factor concepts. In general, however, we are interested in small F for which
I is close enough to the product AF ◦ BF , i.e. to the data reconstructed from
the factors in F . To measure closeness of I and AF ◦ BF , we use the function
s(I, AF ◦BF ) defined by

s(I, AF ◦BF ) =
∑n,m

i,j=1(Iij ↔ (AF ◦BF )ij)
n ·m , (7)

where ↔ is the biresiduum (i.e. many-valued logical equivalence). This function
is proposed in the above-mentioned papers. In fact, it turned out during our ex-
periments that we need a slight generalization of this function, which we describe
below.
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3 Educational Data and Its Factor Analysis

3.1 A Broader Context

Analyzing students’ performance is a task which constantly occupies educators.
On a small scale, teachers are naturally interested in performances of their in-
dividual students as well as of their classes to help their students improve, with
respect to educational aims and objectives. On a large scale, understanding stu-
dents’ performance is of great interest at the national level: Education experts
attempt to understand the effects of current curricula and approaches to educa-
tion to possibly improve educational policies. Our project fits into this picture.
We attempt to analyze students’ performances as assessed by the tasks they
attempts in examinations. Unlike the common approaches, which are mostly
based on classical statistical methods, we propose to utilize the recently devel-
oped method of factor analysis of ordinal data described in the previous section.
The limited extent of this paper prevents us from describing the results we ob-
tained to any larger extent as well as from describing broader ramifications of
the findings and comparison to analyses obtained by alternative methods. We
therefore present a fraction of our results only, which nevertheless meets our
primary purpose in this paper, namely to demonstrate that our method is capa-
ble of revealing natural and well-interpretable factors hidden in the outputs of
educational assessments.

3.2 The Data

We analyze anonymized data coming from the official school-leaving (so-called
A-level) examination tests that are used in the UK by universities to select
students. In brief, our overall aim in this project is to see what factors may
explain the students’ performances. In addition, we are interested in the question
of the so-called construct validity [23] of the examinations, namely the extent
to which students’ responses, assessed as being at a particular level, match the
intentions of the assessment designers in terms of the qualitative performance
standard intended to broadly characterise responses at that level. This is the kind
of question that is difficult to study using traditional quantitative methods.

The data contains results of 2774 individual students’ performances on a
given examination in the subject “Government and Politics.” The whole exami-
nation consists of four modules (i.e. four papers). Our data concerns the second
module, which covers the current British governance.3 Students choose two top-
ics out of four possible. Our data contains the results for topic 2 (parliament) and
topic 3 (the executive), which is the most popular combination. For each topic
(2 and 3), the students answer three questions, i.e. six questions in total. The
answer to each question, which is a piece of prose, is assessed by examiners with
regard to three so-called assessment objectives, namely “knowledge and under-
standing,” “analysis and evaluation,” and “communication,” with the exception
3 The exam paper is available at http://filestore.aqa.org.uk/

sample-papers-and-mark-schemes/2016/june/AQA-GOVP2-QP-JUN16.PDF.
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of the first question in each topic for which only the first assessment objective
is considered. As a result, 14 evaluations for each student examination (one for
each topic, question, and permissible assessment objective) are obtained. A stu-
dent obtains a mark in each of the 14 evaluations (the largest possible marks for
the evaluations are mutually different in general). The sum of all marks gives
the total mark of maximum value 80 assigned to this student, from which the
grade for the student is obtained by a simple thresholding. The possible grades
are A (the best grade, represented numerically by 5), B (represented by 4), C
(3), D (2), E (1), and N (0). In addition, a simple scaling is defined for each of
the 14 evaluations which assigns each possible mark for this evaluation a level on
a five-element scale 0, . . . , 4 with 4 indicating the best performance. This scaling
brings the evaluation data on a common scale.4 Two exceptions are attributes
5 and 8 which are mapped on a three-element scale (level 0 represented by 0,
level 1-2 represented by 1.5, and level 3-4 represented by 3.5). We neverthe-
less embed this three-element scale to the five-element one by the assignment
0 7→ 0, 1-2 7→ 1, and 3-4 7→ 3. Each student examination is thus described by 14
fuzzy (graded) attributes over a five-element scale L = {0, 1/4, 1/2, 3/4, 1} whose
degrees represent the levels 0, . . . , 4. A sample of the data sorted by the total
marks is shown in Table 1: The first column represents the total marks, the
second one represents the grades, and the remaining columns represent the 14
graded attributes, which are explained in Table 2.

3.3 Selected Analyses

The data described in the previous section may thus be represented by a 2774×14
matrix I with degrees in the scale L = {0, 1/4, 1/2, 3/4, 1}, i.e. a matrix I ∈
L2774×14. A part of this matrix corresponding to the data from Table 1 is shown
in Table 3.

We performed factor analyses of this data using the method described in
section 2. In accordance to the intentions to understand the factors behind the
various overall performance grades, we split the matrix I into 6 submatrices
according to the grades. Thus, since there are 607 students who obtained grade
A, we analyzed the corresponding 607× 14 submatrix IA of the whole matrix I
and we performed this for the submatrices IG for every grade G = A, . . . , E, N.

Since our algorithm computes the factors one by one, from the most sig-
nificant ones in terms of data coverage to the least significant until an exact
factorization of the input matrix IG is obtained, we observed the coverage of
the data IG by the first factor, by the first two factors, by the first three fac-
tors, and in general by the first l = 1, . . . , k factors where k is the total number
of factors computed from the data. To measure coverage, which serves as an
indicator of how well the data is explained by the factors, we first used the
function (7) [5,6,8,9], which is a direct generalization of the coverage function
from the Boolean case. We, however, observed a phenomenon not encountered in
4 The marking scheme is described in http://filestore.aqa.org.uk/

sample-papers-and-mark-schemes/2016/june/AQA-GOVP2-W-MS-JUN16.PDF.
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Table 1: Sample of the examination data.
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78 5 4 4 4 4 3,5 4 4 3,5 4 4 4 4 4 4
77 5 4 4 4 4 3,5 3 2 3,5 4 4 4 4 4 4
76 5 3 3 4 4 3,5 4 4 3,5 4 4 4 4 4 4
75 5 2 4 4 4 3,5 3 3 3,5 4 4 4 4 4 4
75 5 3 3 4 3 3,5 4 4 3,5 4 4 4 4 4 4
74 5 4 3 4 3 3,5 4 4 3,5 4 4 4 4 4 4
73 5 4 3 4 3 3,5 3 3 3,5 4 4 4 4 4 4
73 5 3 4 4 3 3,5 4 3 3,5 4 4 4 4 4 4
73 5 3 3 4 4 3,5 4 3 3,5 4 4 4 4 3 4
73 5 4 3 4 4 3,5 4 4 3,5 3 4 4 4 4 4
73 5 4 4 4 3 3,5 4 3 1,5 4 4 4 4 4 4
73 5 3 4 4 3 3,5 3 4 3,5 4 4 4 4 4 4
73 5 4 4 4 4 3,5 3 3 3,5 4 4 4 4 4 4
73 5 3 3 4 4 3,5 3 4 3,5 4 4 4 4 4 4
73 5 3 2 3 3 3,5 4 4 3,5 4 3 4 4 4 4
72 5 4 4 4 4 3,5 4 4 3,5 4 4 4 3 3 3
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Table 2: Meaning of the 14 graded attributes.

attribute label in table 3 description
1 k_cor_par demonstrates knowledge of core parliamentary principles
2 k_cor_exe demonstrates knowledge of core principles of the executive
3 k_par_mac demonstrates knowledge of parliamentary machinery
4 e_par_mac explains and analyses aspects of parliamentary machinery
5 c_par_mac communicates effectively about aspects of parliamentary machinery
6 k_cab_gov demonstrates knowledge of cabinet government
7 e_cab_gov explains and analyses aspects of cabinet government
8 c_cab_gov communicates effectively about aspects of cabinet government
9 k_par_mod demonstrates knowledge of pros and cons of parliamentary models
10 e_par_mod explains and analyses pros and cons of parliamentary models
11 c_par_mod communicates effectively about pros and cons of parliamentary models
12 k_pow demonstrates a knowledge of power structures in government
13 e_pow explains and analyses power structures in government
14 c_pow communicates effectively about power structures in government
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Table 3: Matrix with grades, or a formal fuzzy context, representing the data
from Table 1.

1 1 1 1 3/4 1 1 3/4 1 1 1 1 1 1
1 1 1 1 3/4 3/4 1/2 3/4 1 1 1 1 1 1

3/4 3/4 1 1 3/4 1 1 3/4 1 1 1 1 1 1
1/2 1 1 1 3/4 3/4 3/4 3/4 1 1 1 1 1 1
3/4 3/4 1 3/4 3/4 1 1 3/4 1 1 1 1 1 1
1 3/4 1 3/4 3/4 1 1 3/4 1 1 1 1 1 1
1 3/4 1 3/4 3/4 3/4 3/4 3/4 1 1 1 1 1 1

3/4 1 1 3/4 3/4 1 3/4 3/4 1 1 1 1 1 1
3/4 3/4 1 1 3/4 1 3/4 3/4 1 1 1 1 3/4 1
1 3/4 1 1 3/4 1 1 3/4 3/4 1 1 1 1 1
1 1 1 3/4 3/4 1 3/4 1/4 1 1 1 1 1 1

3/4 1 1 3/4 3/4 3/4 1 3/4 1 1 1 1 1 1
1 1 1 1 3/4 3/4 3/4 3/4 1 1 1 1 1 1

3/4 3/4 1 1 3/4 3/4 1 3/4 1 1 1 1 1 1
3/4 1/2 3/4 3/4 3/4 1 1 3/4 1 3/4 1 1 1 1
1 1 1 1 3/4 1 1 3/4 1 1 1 3/4 3/4 3/4
...

...
...

...
...

...
...

...
...

...
...

...
...

...

the previous analyzes reported in the literature which is due to the considerable
size of the data (a 2774 × 14 matrix over a 5-element scale is comparable to a
2774 × (14 · 5) = 2774 × 70 Boolean matrix [6]). Namely, the accumulation of
the biresidua Iij ↔ (AF ◦ BF )ij by the summation in (7) makes the algorithm
select also flat factors. By “flat” we mean that the entries Cl(i)⊗Dl(j), by which
the factor 〈Cl, Dl〉 contributes to the explanation of the input data, are close to
1/2. In many such cases, we would naturally prefer factors that are less flat even
though their coverage as measured by (7) is slightly smaller, because such factors
are more discriminative and thus more informative. To solve this problem, we
adjusted the function (7) as follows: The new function, sc(I, AF ◦BF ), is defined
by

sc(I, AF ◦BF ) =
∑n,m

i,j=1(c(Iij ↔ (AF ◦BF )ij))
n ·m , (8)

where c : L → L is an appropriate increasing function satisfying c(0) = 0 and
c(1) = 1. In our analyses, we used c(a) = aq

√
mn and obtained satisfactory results

for q = 0.1, which we report below. The effect of using c(Iij ↔ (AF ◦ BF )ij) is
the following. The value Iij ↔ (AF ◦ BF )ij measures closeness of the values at
the 〈i, j〉 entry of the original matrix I and the matrix AF ◦ BF reconstructed
from the computed set F of factors. Transforming this value by the monotone
c emphasizes entries that are very close while inhibiting those that are not so
close. The rate of inhibition is parameterized by the geometric mean

√
mn of
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the number m of attributes and the number n of rows of the matrix, and a
parameter q.

We now briefly describe the results for two grades, namely grade A and grade
E. Grade A was attained by 607 students. Our algorithm obtained 36 factors
from the 607×14 matrix IA. The cumulative coverage of these factors is depicted
in Fig. 1 and Table 4. The depicted coverage values corresponding to the sets
Fl = {F1, . . . , Fl} consisting of the first l factors Fi = 〈Ci, Di〉 computed by the
algorithm are the values sc(I, AFl

◦ BFl
) defined by (8). Thus, we can observe

that the coverage by the first, the first two, and the first three factors is 0.417,
0.539, and 0.618, respectively. As one can see, a reasonable coverage (around
0.75 and more) is obtained by the first five factors already.

factors
0

0.25

0.5

0.75

1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Fig. 1: Cumulative coverage by factors (grade A).

Table 4: Cumulative coverage by factors (grade A).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 . . . F36
0.417 0.539 0.618 0.674 0.720 0.760 0.799 0.834 0.871 0.893 0.914 0.930 0.944 . . . 1

Let us now describe in detail the first three factors, i.e. the three most im-
portant ones according to the algorithm. The extent and the intent of the first
factor, F1 = 〈C1, D1〉, is depicted in Fig. 2 and Fig. 3, respectively.

The intent, which conveys the meaning of each factor, is a fuzzy set assigning
to every attribute yi (i = 1, . . . , 14) a value in the scale L = {0, 1/4, 1/2, 3/4, 1}.
This value is interpreted as the degree to which the particular attribute yi is a
manifestation of the given factor. That is, the degree to which good performance
on the attribute yi accompanies the presence of the factor. Fig. 3 displays such
a fuzzy set for the first factor obtained by the algorithm, i.e. the fuzzy set D1.
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The extent is a fuzzy set assigning to every student (with grade A) a degree
in the scale L to which the student possesses the given factor. Fig. 2 presents
such a fuzzy set, i.e. C1, for the first factor obtained. Since there are 607 students
with grade A, the graph of C1 is somewhat condensed (there are 607 points on
the horizontal axis, hence 607 vertical bars indicating the assigned grades).

object

degree

0
1/4
1/2
3/4

1

Fig. 2: Extent of F1 (grade A).

attribute

degree

0

1/4

1/2

3/4

1

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

Fig. 3: Intent of F1 (grade A).

In particular, one may observe from the intent D1 and the description of the
attributes y1, . . . , y14 in Table 2 that the first factor may verbally be described as
“excellent overall knowledge, and excellent analytical and communication skills,”
because the factor displays almost all attributes to the highest possible degree.
From Fig. 2 one may see that this factor is possessed by most of the students
who obtained grade A to the second-highest degree, 3/4. Since the students are
ordered on the horizontal axis by the their total marks, the graph also tells
us that the factor appears in particular on the students with the highest total
marks. Such a factor is a natural and expected one and from this viewpoint, our
algorithm confirms the intuitive expectations.

The second factor, F2, is depicted in Fig. 4 (extent) and Fig. 5 (intent). This
factor may be interpreted as displaying very good overall knowledge with slightly
limited communication skills and slightly limited knowledge of government power
structures. Most of the students, particularly those with high total marks, possess
this factor to a high degree, the best students even to the highest possible degree.
Only one student does not possess this factor at all (i.e. the corresponding degree
for this student in the extent is 0).
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object

degree

0
1/4
1/2
3/4

1

Fig. 4: Extent of F2 (grade A).

attribute

degree

0

1/4

1/2

3/4

1

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

Fig. 5: Intent of F2 (grade A).

The third factor, F3, is depicted in Fig. 6 (extent) and Fig. 7 (intent). It
may be interpreted as manifesting excellent knowledge in the first two questions
(attributes y1 and y2), only a moderate knowledge of parliamentary machinery
(y3, y4, and y5), virtually no knowledge of cabinet government (y6, y7, and
y8), and reasonable knowledge of parliamentary models (y9, y10, and y11) and
government power structures (y12, y13, and y14). This factor, which is possessed
by many students to a high degree, is considerably discriminative and therefore
interesting.

object

degree

0
1/4
1/2
3/4

1

Fig. 6: Extent of F3 (grade A).

Let us now turn to the analysis of performances of students who obtained
grade E. Due to limited scope, our main purpose is to demonstrate that our
method reveals different factors from the data for grade E compared to the
data for grade A, which is in accordance with intuitive expectations. Grade E
was attained by 322 students and our algorithm obtained 29 factors from the
322 × 14 matrix IE. The cumulative coverage of these factors is depicted in
Fig. 8 and Table 5. The depicted coverage values again correspond to the sets
Fl = {F1, . . . , Fl} consisting of the first l factors Fi = 〈Ci, Di〉 computed by the
algorithm. As with grade A, we can observe that a reasonable coverage (around
0.75 and more) is obtained by the first five factors already.
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1/4

1/2

3/4

1

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

Fig. 7: Intent of F3 (grade A).

factors
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0.25

0.5

0.75

1

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Fig. 8: Cumulative coverage by factors (grade E).

Table 5: Cumulative coverage by factors (grade E).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 . . . F29
0.431 0.580 0.674 0.730 0.767 0.801 0.834 0.857 0.878 0.897 0.914 0.930 0.941 . . . 1

The most significant factor in the data for grade E is depicted in Fig. 9
(extent) and Fig. 10 (intent). We may observe that the factor is possessed by
most students to the degree 3/4 and by a considerably high number of students
even to the highest possible degree. This factor may be described as manifesting
no or very limited knowledge in all questions except for questions regarding
parliamentary models and governmental power structures, for which the students
who possess this factor exhibit moderate performance with respect to all three
assessment objectives.

The second most significant factor for grade E is depicted in Fig. 11 (extent)
and Fig. 12 (intent). This factor is possessed by almost all students to degree
1/2 and by several of them even to degree 3/4. None of the students with grade
E possesses this factor to the highest possible degree. The factor is manifested
by a very limited knowledge of the first two questions (y1 and y2) and moderate
knowledge of the remaining questions except for the question about governmental
power structures where the manifested performance is severely limited.
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Fig. 9: Extent of F1 (grade E).
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Fig. 10: Intent of F1 (grade E).
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Fig. 11: Extent of F2 (grade E).
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y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14

Fig. 12: Intent of F2 (grade E).

The third most significant factor for grade E is depicted in Fig. 13 (extent)
and Fig. 14 (intent). As is apparent from the intent of this factor, the factor is
manifested by reasonably good knowledge in most of the questions. Nevertheless,
the factor is possessed to very small degrees by the students with grade E and,
therefore, is not as significant as the previous factors.
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Fig. 13: Extent of F3 (grade E).
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Fig. 14: Intent of F3 (grade E).

4 Conclusions and Further Steps

The purpose of this paper is twofold. For one, we provide further analyses of real-
world data using the recently developed method of factor analysis of ordinal data
described in [4,5,6,8,9]. Secondly, we provide some first steps in our long-term
project of utilizing relational methods of data analysis, in particular the methods
related to formal concept analysis [11], in understanding students’ performance
data.

We demonstrated by our analyses that students’ performance data, which
consists of a collection of ordinal attributes, may naturally be subject to anal-
ysis by the methods we explore, in particular by the present method of factor
analysis. We also demonstrated that the method yields naturally interpretable
factors from data which are easy to understand, adding thus further evidence of
a practical value of the method.

The limited scope of this paper does not allow us to go into the ramifica-
tions of our results obtained so far for educational policy makers. Formulating
such ramifications is the ultimate goal for our research. Nevertheless, a proper
methodology and experimental basis has first to be developed. Our present
method and the reported experiments are to be considered as the first steps
in this regard. The natural next steps seem to be the following. Firstly, we plan
to further develop the present method of factor analysis. One direction is to
adjust the method to be capable of extracting factors with a pattern preferred
by the users of the method. An example is the flatness of the factors mentioned
above. Another direction, which emerged during our experiments, is to allow a
reasonable interaction with the user of the method. As the factors are generated
one-by-one, we plan to provide the user with the option to accept or reject a
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candidate factor, hence the option to control the very process of factorization.
In face of the extent of the data, we also plan to explore a possible statistical
enhancement of our method. Secondly, we plan to compare the results of our
factor analyses to the results obtained by alternative factor-analytic methods,
as well as put our work in further works on analyzing educational data by rela-
tional methods, e.g. [18]. Thirdly, we plan to explore further methods related to
formal concept analysis in analyzing students’ performance data.
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Abstract. Formal Concept Analysis (FCA) of a document corpus yields
a concept lattice uniting the powersets of corpus terms and documents.
Structural navigation of the directed graph connecting neighbours in
this lattice affords interactive query refinement. The starting point for
navigation is typically the closure of the conjunctive Boolean query with
respect to the corpus. This paper describes the special treatment of “clo-
sure” terms – those in this closure but which are not specified by the user
– and its implications for implicit structural navigation of the digraph
through query editing. This approach, in which the user’s choice of each
additional query term is constrained to avoid the null result set, is con-
trasted with explicit structural navigation. If a term is added which does
not co-occur with the terms already specified, the user must either re-
move the new term or choose which other term(s) to remove. A novel
technique is used to present the user with options for those other terms.

1 Introduction

1.1 Formal Concept Analysis for Interactive Query Refinement

Formal Concept Analysis (FCA) has been used in corpus-based information
retrieval for the construction and interactive refinement of conjunctive Boolean
queries (see e.g. [15,14,16,6]). Here, a query is a set of terms, all of which must
be present in each document retrieved in response to the query. The derivation
operator, which maps the query onto the set of matching documents, induces a
Galois connection between the set of potential queries – the powerset of terms
appearing in the corpus – and the set of potential results – the powerset of
documents in the corpus. This choice elegantly combines the query and result
spaces into a unified structure – the concept lattice – which can be navigated
either explicitly or implicitly by the user for interactive refinement of the query.

The set of documents returned by a query, and the set of query terms, aug-
mented by any other terms – known as closure terms – which are common to
all documents in the result set, constitute a formal concept. The association be-
tween terms present in the corpus and the documents in which they occur is
known as a formal context, and is often specified in the form of a binary matrix.
A simple example formal context is shown in Figure 1a.
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Given a formal context, FCA enumerates the set of formal concepts, partially
orders them by document set subsumption, and computes the neighbour relation
as the transitive reduction of this ordering relation. The result is a single-source,
single sink, directed acyclic graph (DAG), whose vertices represent formal con-
cepts and whose arcs connect neighbours.

A lower [upper] neighbour of a concept represents a minimal conjunctive
expansion [contraction] of the corresponding set of query terms with respect
to the corpus, and the consequently contracted [expanded] result set1. These
neighbours constitute the available options for incremental modification of the
current query. The dominant paradigm for FCA-based query refinement involves
explicit navigation via (undirected) edges in this graph – a process which we refer
to as structural navigation. Navigation is typically constrained to neighbours
of the query concept, although concepts beyond neighbours are sometimes also
offered as candidates [12,5]. The graph can be presented to the user in its entirety
[8], or, more usually, as a keyhole view of the neighbourhood of the current
concept [2,4,3,7].

1.2 Query Editing with Ranked Refinement Options

Lindig [12] instead presented users with a list of terms in the current query, any
one of which could be selected for removal, and a second list of terms which,
when selected and thereby added to the query, would return a non-empty result
set. The user is also shown the result set as a list of identifiers, and this list is
updated with each term selection. This approach supports implicit navigation
of the concept lattice to super- and sub-concepts – not necessarily neighbours –
without explicitly exposing the user to the concept lattice or requiring them to
comprehend it. To refine their query, the user is thereby focused on editing the
query itself rather than navigating the concept lattice.

In contrast with structural navigation, the use of term lists as the primary
interface for interactive query refinement naturally supports any scheme which
ranks terms to assist the user’s choice. Using Latent Semantic Analysis, the
SORTeD prototype [13] ranks the lists of query and unused terms according
to their “semantic” relevance to the result set of a conjunctive Boolean query.
With the exception of term substitution, as described in Section 4, SORTeD
implements the query editing techniques described in this paper.

1.3 Contribution

This paper describes a method by which the user explicitly edits a conjunctive
Boolean query, subject to the constraint that the edited query must have a
non-empty result set. To respect this constraint, the addition of a disjunctive
term entails the removal of one or more terms previously entered by the user.

1 Square brackets are used throughout this paper to indicate that a sentence is true
both when read without the bracketed terms and when read with each bracketed
term substituted for the term which precedes it.
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Here we describe the term most recently entered by the user as disjunctive if its
addition to the existing conjunctive Boolean query would return an empty result
set and conjunctive otherwise. The user is alerted upon entry of a disjunctive
term, and prompted to choose, from amongst automatically generated options,
which term(s) should be removed. Removal of the disjunctive term is one of those
options. An FCA-based technique is described for identifying those options which
minimise the number of user-specified terms removed.

This approach to refining conjunctive Boolean queries is compared and con-
trasted with the explicit structural navigation of the concept lattice digraph. In
particular, it demonstrates that: special treatment of closure terms is appropri-
ate; not all neighbours of the query concept are reachable through the addition or
removal of a single user-specified query term; and navigation is not constrained
to neighbours.

1.4 Organisation

This paper is organised as follows. Section 2 commences with a brief introduction
to the application of Formal Concept Analysis for interactive query refinement.
It describes a query editing approach to interactive query refinement, comparing
and contrasting it with structural navigation of the lattice digraph. Section 3
canvasses the computational implications of the query editing approach. A novel
scheme is then described in Section 4 for computing term substitution options
upon user entry of a disjunctive query term. Following a discussion in Section 5
of related work, the contributions of this paper are summarised in Section 6.

2 FCA for Interactive Query Refinement

2.1 Introduction

Formal Concept Analysis (FCA) derives multiple-inheritance class hierarchies
from empirical data, and is commonly applied to information retrieval (see e.g.
[6] for a recent survey). For classical information retrieval, each class or concept
is a set of documents and a set of terms such that each document contains each
of the terms [3]. A concept is maximal in the sense that there are no other
documents containing all of the specified terms, and no other terms which are
common to all of those documents. A concept is a sub-concept [super-concept ]
of another if it corresponds to a proper subset [superset] of its documents –
or equivalently to a proper superset [subset] of its terms. The term “multiple-
inheritance” refers to the fact that a concept can be a sub-concept of two or
more others, between which a sub-concept relationship does not exist.

For a given document corpus, the corresponding set of concepts, partially or-
dered by the sub-concept relation between them, forms a complete lattice. This
lattice can be represented as a directed graph – or digraph – whose vertices are
the concepts and whose directed arcs are from concepts to their upper neigh-
bours. A super-concept of a given concept is an upper neighbour if none of its
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sub-concepts are super-concepts of the given concept. Layered drawings of this
digraph exist in which all arcs of the digraph are upwards, allowing arrows to be
omitted from the arcs. The resultant graph drawing is known as a Hasse diagram
(see e.g. [10]). Figure 1b shows the Hasse diagram corresponding to the formal
context in Figure 1a.

At the top of the lattice digraph is the (sole) sink vertex, representing the
supremum concept, which corresponds to the entire corpus and any terms com-
mon to all documents; at the bottom of the lattice digraph is the (sole) source
vertex, representing the infimum concept, which corresponds to the set of all
terms in the corpus and any documents which contain all of them. Each graph
vertex is labelled with any term(s) for which the extent of the corresponding con-
cept is exactly the set of documents which contain it, and with any document
identifier(s) for which the intent is exactly the set of terms in that document.
A concept is an attribute [object] concept for each attribute [object] with which
the corresponding vertex is labelled.

2.2 Closure Terms

In corpus-based information retrieval applications of FCA, the user starts by
specifying a set of terms which is to be used as a conjunctive query. The result
set – the set of documents containing all of those terms – is easily determined,
along with any additional terms which those documents have in common. To
distinguish these additional terms from the query terms, we refer to them as
closure terms. Closure terms, if any, are identified automatically and provide
additional information about the result set – and indeed the corpus – which the
user acquires without reading the constituent documents. Codocedo and Napoli
[6] refer to the addition of closure terms as query “extension”, and note the
“exhaustive” exploitation of closure terms to provide feedback to the user on
the corpus-specific context of their query.

While closure terms are exposed to the user in SORTeD, however, they are
quarantined from user interaction during subsequent query editing, since the
result set is unaffected by either: explicitly extending the user-specified query
with closure terms; or removing closure terms from a conjunctive Boolean query
which has been extended in this manner. The user must understand the definition
of closure terms to properly interpret not only the information they impart about
the corpus and the result set, but also their different treatment and behaviour
in the user interface.

2.3 Query Refinement

Having specified a query which has a non-empty result set, the user can spe-
cialise or generalise the query as required. Query generalisation [specialisation]
is typically implemented as the explicit selection of a super- [sub-] concept in
the concept lattice, potentially via upward [downward] structural navigation.
Some authors [3,14] refer to navigation to upper and lower neighbours as query
“enlargement” and “refinement” respectively.
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Fig. 1: An example formal context, its corresponding Hasse diagram, and options
for specialisation from query concept q.

Alternatively, individual terms can be manually added to, or removed from,
the query [12]. Query generalisation is achieved by removing one or more of the
specified query terms. Query specialisation, on the other hand, involves adding
conjunctive terms – those which occur in proper2, non-empty subsets of the
current result set of documents. In addition to requiring the user to select only
from query terms in the case of generalisation, and only from conjunctive terms
in the case of specialisation, the SORTeD user interface provides advanced
knowledge of the effect each choice would have on the size of the result set.
Constraining the choice of additional terms to conjunctive terms during query
refinement also provides the user with explicit information about the terms and
term combinations occurring in the corpus, which they would otherwise need to
infer from failed queries.

2.4 Contrast with Structural Navigation

Section 2.3 described the interactive refinement of a conjunctive Boolean query
through explicit editing of the query. Like explicit structural navigation of the
concept lattice digraph, this approach to query refinement constrains the user’s
choice to the set of super- and sub- concepts of the current concept. Nevertheless,
there are significant differences between the behaviour of these two approaches,
and these are explained in this section.

The manual addition [removal] of a single term implicitly selects a sub-
[super-] concept – but not necessarily a neighbour – of the current concept.
The following example illustrates this point. Consider a corpus consisting of
three documents {1, 2, 3} containing combinations of three terms {A,B,C}. Its
formal context is shown in Figure 1a and the corresponding Hasse diagram in
Figure 1b. Starting at the supremum, as shown in Figure 1c, the user specifies

2 this excludes both current query and closure terms, which occur in an improper
subset.
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Fig. 2: Generalisation options for three query strings which select the infimum in
Figure 1b. This query concept, q, is shown red. Directed edges from q, labelled
with the attribute to be removed, enumerate the query generalisation options.

term A, B or C as their first search term. Term A selects the left lower neigh-
bour of the supremum, since there is a document in the corpus containing only
that term. Similarly, term B selects the right lower neighbour. However, if the
user enters C as the first search term, the infimum is selected, since the only
document in the corpus which contains term C also contains the (closure) terms
A and B. Here the addition of a search term to the (empty) query implicitly
navigates to a sub-concept of the current concept which is not a lower neighbour.
As illustrated using the directed edge labelled “-C” in Figure 2a, its subsequent
removal returns directly to the supremum, which is a super-concept but not
upper neighbour of the infimum.

A given concept in the lattice can be reached using different sequences of
query terms. For the example context of Figure 1, the infimum can be reached
not only with the query C, but also with the queries AB, AC, BA and BC.
Query sequences such as CA and ABC are not possible, since the last or last
few terms are rendered closure terms – and therefore unavailable for subsequent
user entry – by the entry of earlier terms in the sequence. In the case of CA, for
example, the query C selects the infimum, at which point A becomes a closure
term whose entry by the user would be nugatory.

Since only the query (vice closure) terms are available for removal, the query
sequence used clearly affects the subsequent options for generalisation. Figure 2
illustrates the options for query generalisation for three of these queries. Fig-
ure 2b shows that for the query AB, either of the upper neighbours of the
infimum is reachable by removing one of the search terms. In contrast, Figure 2c
shows that the right-most concept cannot be reached by removing either term
from the query AC. Whereas removing C from the search AC selects the left-
most concept, removing A instead results in no change in the selected concept.
In this case, A simply changes category from a user-specified query term to a
closure term. Such nugatory interaction could be prevented by removing A from
the set of terms which can be removed until such time as C has been removed.
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A query editing approach to query refinement was described in Section 2.3. In
this subsection its behaviour has been compared and contrasted with structural
navigation of the concept lattice digraph. In particular, while all lower neighbours
are reachable in the next move, the query used to reach the current concept may
render some upper neighbours unreachable in the user’s next move. Furthermore
the concepts reachable in the next move may include super- [sub-] concepts which
are not upper [lower] neighbours.

3 Computation for Query Editing

The query editing scheme described in Section 2.3 involves the addition or re-
moval of a single user-specified query term. In order to inform the user of the
anticipated effect on the size of the result set, and in the case of query special-
isation, to constrain the choice of additional terms to those which produce a
non-empty result set, it is necessary to calculate the set of concepts which can
be reached in the user’s next move.

A range of algorithms exist for the enumeration of concepts in a formal con-
text (see e.g. [11,1]), and these can be readily modified to enumerate only those
concepts which can be reached from the current concept by adding or remov-
ing a single query term. Reachable sub-concepts can be calculated by adding
to the intent of the current concept each unused term in turn and calculating
the result set. Here, an “unused” term is one which is not already in the intent
of the current concept. Terms giving rise to an empty result set are candidates
for term substitution, a technique for which is described in Section 4. Similarly,
the reachable super-concepts can be calculated by removing each term in turn
from the set of user-specified terms, calculating the result set, and optionally
disallowing the removal of any terms for which the result set is not a proper
superset of the extent of the current concept.

The on-demand computation scheme described in this section has the benefit
that only those concepts required to inform the user’s next move are computed
at each step. The required set of concepts must be computed in interactive
timescales, so that the user is not required to wait before contemplating their
next move. Given that the computation is triggered by the user’s move, however,
and the user must assess the consequences of that move – viz. the intent and ex-
tent of the new query concept – before contemplating the next, this requirement
is not onerous. The computational complexity of enumerating the reachable sub-
concepts is O(t2d) Boolean AND operations, where t is the number of unique
terms in the formal context and d is the number of documents. Whilst this has
the potential to become prohibitive for large corpora, the computation is highly
parallelisable.

The set of concepts reachable in the next move could be stored in case sub-
sequent changes to the query return to the same concept. However, since the set
of reachable super-concepts is dependent not only on the current concept, but
also on the query used to reach it, more than one set of reachable super-concepts
may need to be stored for a given concept.
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4 Substituting Disjunctive Terms

Let the partially ordered set 〈B, <〉 be the concept lattice corresponding to a
formal context constructed from the terms and documents of a nominated cor-
pus. The elements of B are the formal concepts and the relation < between
concepts corresponds to set inclusion between concept extents. 〈B, <〉 is a com-
plete lattice, for which the greatest lower and least upper bounds, inf S and
supS, respectively, on any S ⊆ B exist and are unique [9].

Definition 1 Let X(S) , {x ∈ B|x ≤ z,∀z ∈ S}. Then inf S ∈ X(S) and
inf S ≥ x, ∀x ∈ X(S).

Definition 2 Let Y(S) , {y ∈ B|y ≥ z,∀z ∈ S}. Then supS ∈ Y(S) and
supS ≤ y,∀y ∈ Y(S).

Let q ∈ B denote the current query concept, α ∈ B an ancestor of q < α,
and t ∈ B the attribute concept of a nominated disjunctive term. By definition,
a disjunctive term is one which is not in the intent of q or any of its descendants,
so that

q 6< t (1a)

inf {q, t} = inf B (1b)

Assume the existence of a procedure which identifies all distinct pairs (α′, ω)
such that

α > q (2a)

ω , inf{α, t} ∈ B (2b)

α′ , sup{ω, q} ∈ B (2c)

Figure 3a shows the Hasse diagram for the poset 〈{q, α, ω, t} , <〉. The edges
are shown dashed to indicate that they need not correspond to neighbour re-
lations in the Hasse diagram for 〈B, <〉. From Equation 2b and Definition 1,
ω ∈ X({α, t}), and for any x ∈ X({α, t}), x ≤ ω. The intent of any x < ω is a
superset of that of ω, and hence differs from those of α and t by more terms. In
particular, Equation 2b ensures that the new query, ω, differs from α > q by the
smallest number of (added) terms consistent with the constraint ω ∈ X({α, t}).
We note in passing that Equation 1a eliminates the possibility that ω = α.

Figure 3b shows the Hasse diagram for the poset 〈{q, α, α′, ω, t} , <〉, which
differs from that in Figure 3a by the addition of α′. From Equation 2c and Def-
inition 2, α′ ∈ Y({q, ω}) and for any y ∈ Y({q, ω}), y ≥ α′. From Equations 2a
and 2c and Definition 2, α ∈ Y({q, ω}) and hence

α ≥ α′ (3)
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Fig. 3: Hasse diagrams showing the ordering of concepts q, α, t, ω and α′.

Equation 2c ensures that α′ differs from q by the smallest number of (removed)
terms, and from ω by the smallest number of (added) terms, both consistent
with the constraints α′ ∈ Y({q, ω}).

A procedure for enumerating all pairs satisfying Equation 2 is as follows. For
each α > q encountered during an upwards, breadth-first traversal of 〈B, <〉
from q, find ω and then α′ using Equations 2b and 2c. If α′ 6= α, discard (α′, ω).
The upwards, breadth-first traversal ensures that the algorithm encounters α′ as
a candidate ancestor of q before – or strictly speaking not later than – α ≥ α′.
By an upwards, breadth-first traversal, we mean that all upper neighbours of
a concept are visited before any more distant ancestors, and that a vertex is
not visited until each of its lower neighbours has been. The latter requirement
is necessitated by the possibility that the lattice digraph may contain parallel
directed paths of unequal path length. If ω has been previously encountered, and
hence also α′ from Equation 2c, the pair (α′, ω) has already been generated, and
traversal can progress immediately to the next α > q.

Proposition 1.
ω = inf {α′, t} (4)

Proof. Define
ω′ , inf {α′, t} (5)

Substituting Equation 3 into Definition 1 yields ω′ ≤ t and ω′ ≤ α′ ≤ α, to
which Definition 1 can be reapplied to give ω′ ≤ inf {α, t} = ω. But ω ≤ α′ from
Equation 2c and ω ≤ t from Equation 2b, so ω ≤ inf {α′, t} = ω′. Hence ω′ = ω.

Proposition 1 shows that evaluating the right-hand side of Equation 5 in the
hope of finding a tighter lower bound ω′ on α′ and t is nugatory. Subject to the
initial choice of α, the pair (α′, ω) minimises the number of terms removed from
and added to the current query q to include the disjunctive term for which t is the
attribute concept. Having enumerated the possible choices for α > q to identify
all unique pairs (α′, ω), the problem reduces to choosing from amongst these the
ω differing from q by the smallest number of terms. The cardinality of the set
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Fig. 4: Substitution of term C for queries AB and AD in example context.

difference between the intents of q and α′ gives the number of terms removed
from the existing query, while that of the set difference between the intents of ω
and α′ gives the number of terms added to it. The most straightforward approach
is to minimise the sum of these two numbers. If preserving terms of the current
query is a priority, then a weighted sum might be used in which the number of
removed terms is weighted more highly than the number of added terms. The
possible choices for the new query ω could be presented to the user ranked in
order of increasing (weighted) term difference.

Applying this approach to the example context in Figure 4a with query AB
yields the two jointly-optimal solutions ω∗1 and ω∗2 shown in Figure 4b, corre-
sponding to ancestors α′1 and α′2, respectively, of the query concept q (shown
red). Each involves removing one query term and adding the (formerly) disjunc-
tive term C, for which the attribute concept t is shown green. The user might
be asked to choose between them, possibly aided by additional information such
as extent cardinality, or the semantic relevance of the additional terms.

In this section, we have so far ignored the distinction between user-specified
and closure terms. This distinction should be taken into account to privelege
options minimising the number of user-specified terms which must be removed
to accommodate the new term. If, for example, the user-specified query against
the formal context of Figure 4a were AD, then the removal of closure term B
from the intent of the query concept should be preferred over that of query
term A. Descendant ω∗1 of α′1 is therefore preferred over ω2 of α′2, as shown in
Figure 4c, even though both involve the removal of two terms from the query
concept.

Like conjunctive terms, disjunctive terms should be offered in a progressively-
constrained list for addition to the query. Upon user selection of a disjunctive
term, options would be presented showing which query (vice closure) terms must
be removed to accommodate the new term. The terms to be removed might
be shown struck out, and the terms to be added – other than the nominated
disjunctive term – highlighted, but otherwise treated as closure terms.
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5 Discussion and Related Work

If the user is not aided in their initial choice of query terms, it is not possible
to guarantee that each term occurs in the corpus and that at least one docu-
ment contains all terms. The query editing scheme described in this paper is
therefore used ab initio, with the initial query being the set of terms associated
with the supremum. In contrast, Carpineto and Romano [2] permitted uncon-
strained entry of an intial set of query terms, and described a composite method
whereby the resultant query could be mapped onto the concept lattice. Ab ini-
tio computer-assisted query refinement requires the initial enumeration of all
attribute concepts in the formal context and user interaction with the list of all
terms in the corpus. Manual entry of terms, aided by term completion, partially
alleviates the challenge posed by large corpora of finding terms in a long list.

6 Conclusion

This paper has described a method by which the user explicitly edits a con-
junctive Boolean query, subject to the constraint that the edited query has a
non-empty result set. Adoption of this query-editing approach, and in particular
its use of lists to present options for term addition and removal, has allowed
the SORTeD prototype to offer the user ranked options for interactive query
refinement. The addition of a disjunctive term entails the removal of one or
more terms previously entered by the user. The user is alerted upon entry of a
disjunctive term, and prompted to choose, from amongst automatically gener-
ated options, which term(s) should be removed. An FCA-based technique has
been described for automatically identifying options minimising the number of
user-specified terms removed.

This approach to refining conjunctive Boolean queries has been compared and
contrasted with the explicit structural navigation of the concept lattice digraph.
In particular: special treatment of closure terms is appropriate; not all neighbours
of the query concept are reachable through the addition or removal of a single
user-specified query term; and navigation is not constrained to neighbours.
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Abstract. Formal Concept Analysis takes as input a bigraph known as
a formal context. It produces a partially-ordered set of formal concepts
which constitutes a complete lattice. This lattice can be represented as a
directed acyclic graph, whose vertices are formal concepts and whose arcs
connect neighbours in the ordering relation between them. This paper
describes a divide-and-conquer technique for discovering and exploiting
hierarchical structure in a formal context. Simultaneous hierarchical par-
titioning of both the context bigraph and the resultant lattice digraph is
used to achieve efficient computation and, elsewhere, interactive visuali-
sation of the concept lattice.

1 Introduction

Formal Concept Analysis (FCA) derives a multiple-inheritance class hierarchy
from a formal context. A formal context consists of a set of objects, a set of
attributes, and a binary relation between them. The classes derived by FCA are
known as formal concepts. Each consists of a set of objects, called its extent,
and a set of attributes, called its intent, such that each object in its extent,
and no others, has all attributes in its intent. The set of formal concepts, when
partially ordered by set inclusion, forms a complete lattice. This lattice can be
efficiently represented as a directed acyclic graph (DAG), whose vertices are
formal concepts, and whose adjacency relation is the transitive reduction of the
ordering relation.

The number of formal concepts is bounded above by an exponential function
of the number of objects and attributes in the context. Scaling FCA to the
interactive analysis of large data sets poses two fundamental challenges: the time
required to compute the concepts and construct the large lattice digraph; and
the difficulty of meaningful and responsive user interaction with this digraph.

The times required to enumerate all formal concepts of a formal context, and
to calculate the transitive reduction of the ordering relation between them, are
both bounded above by a polynomial function of the number of formal concepts.
One class of “divide and conquer” techniques tackles this inherent computational
complexity by partitioning the context, performing FCA on each resultant sub-
context, and combining the results. FCA is thereby mapped onto multiple inde-
pendent processors, each performing FCA on a sub-context which is significantly
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smaller than the overall context. Several FCA algorithms use this approach for
the enumeration of concepts [7,2] and construction of the lattice digraph [3,11].

This paper describes the Carve technique for recursively partitioning a for-
mal context, which produces a corresponding hierarchical partition of the lat-
tice digraph. Carve exploits structure which we have identified in an empirical
author-publication context for co-authorship analysis, and which Bhatti et al. [4]
found in software systems. We explain how recognising this structure leads to a
novel divide-and-conquer algorithm for efficient FCA. The resultant hierarchical
partitioning of the lattice digraph is exploited elsewhere for both layout of, and
interaction with, the Hasse diagram [10].

Carve recursively partitions a formal context for analysis by any FCA algo-
rithm which, or algorithms which collectively: enumerates the formal concepts;
calculates the transitive reduction of the ordering relation; and returns the corre-
sponding labelled DAG. It further assembles the resultant digraphs into that for
the original context. Carve does not compete with existing FCA algorithms; it
accelerates their application to formal contexts exhibiting the requisite structure.

This paper is organised as follows. Section 2 introduces relevant aspects of
the theories of partial orders, FCA, graphs and graph drawing. Section 3 then
establishes the theoretical foundations for the Carve algorithm, after which the
algorithm is detailed in Section 4. A brief discussion of related work is presented
in Section 5, followed by a summary in Section 6.

2 Preliminaries

This section introduces relevant aspects of the theories of partial orders and
FCA, as well as graphs and graph drawing. It assumes relevant knowledge found
in such textbooks as [5] and [8] respectively.

Definition 1 A formal context (G,M, I) is a triple consisting of a set G of
objects, a set M of attributes and a binary relation I ⊆ G ×M such that an
object g ∈ G has attribute m ∈M iff (g,m) ∈ I.

Definition 2 The context bigraph for the formal context (G,M, I) is a bipartite
graph having object vertex set G, attribute vertex set M , and edge set I.

Definition 3 A connected component of a context bigraph is a maximal sub-
graph in which a path exists between all pairs of vertices.

The example formal context of Figure 1a is represented in Figure 1b as a
context bigraph. Object vertices are drawn with grey fill and attribute vertices
white. The context bigraph has three connected components.

Definition 4 The extent operator / : P(M) → P(G) and intent operator . :
P(G)→ P(M) return the maximal sets

B/ = {g ∈ G | (g,m) ∈ I ∀ m ∈ B} (1a)

A. = {m ∈M | (g,m) ∈ I ∀ g ∈ A} (1b)
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A B C D E F G H I J K L

1 X X

2 X

3 X X

4 X

5 X X

6 X X X

7 X

8 X X X

9 X X X X

10 X

11 X X

12 X X X

(a) Formal context
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(b) Context bigraph

Fig. 1: An example formal context and its corresponding bigraph.

of objects possessing all attributes in B ⊆ M and attributes possessed by all
objects in A ⊆ G.

Here, P(G) and P(M) denote the powersets – sets of all subsets – of G and
M respectively. m/ ≡ {m}/ is the set of objects which have attribute m and
g. ≡ {g}. is the set of attributes possessed by object g.

Proposition 1. For A ⊆ G and B ⊆M

B/ = {g ∈ G | g. ⊇ B} (2a)

A. = {m ∈M | m/ ⊇ A} (2b)

Definition 5 A formal concept of the context (G,M, I) is an ordered pair (A,B)
with extent ∅ ⊆ A ⊆ G and intent ∅ ⊆ B ⊆M satisfying

A. = B (3a)

B/ = A (3b)

Definition 6 A biclique (A,B) in the context bigraph (G,M, I) is a set ∅ ⊂ A ⊆
G of object vertices and a corresponding set ∅ ⊂ B ⊆ M of attribute vertices
such that each vertex in A is adjacent to all vertices in B, and vice versa.

Definition 7 A biclique (A,B) is maximal if there is no biclique (A′, B′) 6=
(A,B) having A′ ⊇ A and B′ ⊇ B.

Proposition 2 (Gaume et el. [6]). (A,B) is a formal concept in the formal
context (G,M, I) having extent A 6= ∅ and intent B 6= ∅ iff (A,B) is a maximal
biclique in the bigraph (G,M, I) having object vertex set A and attribute vertex
set B.
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The elements of the set B(G,M, I) of formal concepts are partially ordered
by defining the relation ≤ between concepts (A,B), (C,D) ∈ B(G,M, I) such
that

A ⊆ C ⇐⇒ (A,B) ≤ (C,D)⇐⇒ B ⊇ D (4)

Definition 8 Let 〈P;≤〉 be a finite partially-ordered set, and let a, b ∈ P satisfy
a < b – i.e. a ≤ b and a 6= b. If @c ∈ P satisfying a < c < b, then we write a ≺ b.
Element a is then called a lower neighbour of b, and conversely b is an upper
neighbour of a.

Proposition 3. FCA of the formal context (G,M, I) produces the lattice

〈B(G,M, I);≤〉 =

〈
C ∪

∨

c∈C

c ∪
∧

c∈C

c;≤
〉

(5)

where c ranges over the set C of maximal bicliques in (G,M, I).

Thus the global supremum ∨c∈Cc and infimum ∧c∈Cc of the set C of maximal
bicliques complete the set B ⊇ C of formal concepts in cases where they have
empty intent or extent, and are therefore not already included in C. We refer to
the supremum and infimum collectively as the extrema.

The complete lattice 〈B(G,M, I);≤〉 can be efficiently represented as a la-
beled digraph whose vertices are concepts and whose arcs connect neighbours.
Each arc is directed from the lower to the upper neighbour, and concepts are
comparable iff there exists a directed path between the corresponding vertices.
For each concept (A,B), the corresponding vertex is labelled with attribute set
µ ⊆ B and object set γ ⊆ A defined as follows:

µ := {m ∈M |m/ = A} (6a)

γ := {g ∈ G|g. = B} (6b)

Definition 9 The concept (A,B) is an attribute concept for each attribute m ∈
µ and an object concept for each object g ∈ γ.

The resultant directed graph is a single-source, single-sink DAG. The source
vertex s, corresponding to the infimum, has only outgoing arcs; the sink vertex t,
corresponding to the supremum, has only incoming arcs. The extent [intent]1 of
any concept is the set of all object [attribute] labels encountered on downward
[upward] paths from that concept. Two lattices are order isomorphic iff their
lattice digraphs, excluding labels, are isomorphic.

Proposition 4. Let t and s be the sink and source vertices, respectively, of a
lattice digraph. Denote by µt and γt the attribute and object label sets of t, and
by µs and γs the attribute and object label sets of s. Then

µt = G.

γt = {g ∈ G|g. = G.}
µs = {m ∈M |m/ = M/}
γs = M/ (7)

1 Square brackets indicate that a sentence is true both when read without the brack-
eted terms and when read with each bracketed term substituted for the preceding
term.
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Proposition 4 indicates that t is labelled with attributes possessed by all
objects and with objects possessing only these universal attributes. Similarly, s
is labelled with objects possessing all attributes and with attributes possessed
only by these universal objects.

A Hasse diagram [8] is a two-dimensional spatial embedding of the lattice
digraph in which the vertical component of each arc is upwards, and edge direc-
tions are accordingly omitted. Attribute [object] labels are placed above [below]
the labelled concept. Figure 2b shows the Hasse diagram for the context bigraph
in Figure 2a. The labelling indicates, inter alia, that the supremum is an at-
tribute concept for attribute G and an object concept for object 10. The vertex
having attribute label set µ = {F} and object label set γ = {5} in Figure 2b
corresponds to the concept ({5, 12}, {F, G}); it “inherits” attribute G from its
upper neighbour and object 12 from its lower neighbour.

3 Foundations of Recursive Partitioning

3.1 Partitioning the Context Bigraph

Each biclique of the context bigraph must be entirely contained within a single
connected component. The maximal bicliques of (G,M, I) can therefore be enu-
merated by dividing the bigraph into its connected components and enumerating
the maximal bicliques of each component. Separate connected components, and
hence also their bicliques, share neither object nor attribute vertices.

Proposition 5. If ∨c∈Cc ∈ C or ∧c∈Cc ∈ C then the bigraph (G,M, I) consists
of a single connected component.

3.2 Partitioning the Lattice Digraph

For any two concepts, the intent [extent] of their supremum [infimum] is the
intersection of their intents [extents].

Proposition 6. For any pair of maximal bicliques drawn from different con-
nected components, their extrema are those of the set C of maximal bicliques.

Corollary 1 No arcs exist between vertices of the lattice digraph corresponding
to maximal bicliques from different connected components of (G,M, I).

Corollary 1 indicates that partitioning the context bigraph into connected
components partitions the vertices of the resultant lattice digraph, excepting the
extrema, into disjoint sets between which there are no arcs. From the converse
of Proposition 5, if (G,M, I) consists of more than one connected component,
then the extrema are not maximal bicliques, and are not covered by Corollary 1.

Figure 3a uses rounded boxes as containers to illustrate this partitioning of
the concepts for the example context in Figure 1. The concepts derived from the
largest connected component of the context bigraph – with the exception of the
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Fig. 2: Bigraph and Hasse diagram for largest connected component of Figure 1b.

infimum which does not correspond to a biclique – are in the pink container.
These concepts and the ordering relation between them are the same as those
in Figure 2b, which resulted from FCA of the largest component in isolation. As
expected, there are no edges (arcs) between concepts in different containers.

A context bigraph exhibiting two or more connected components can be
partitioned into those components, those components analysed separately to
identify their maximal bicliques and compute the transitive reduction of their
partial ordering, and the sink [source] vertices of each resultant sub-graph of the
lattice digraph connected to the global sink [source] to form the lattice digraph.
FCA of the context (G,M, I) is thereby reduced to independent FCA for each of
the sub-contexts (Gi,Mi, I ∩ (Gi×Mi)). Some care is required (see Section 3.5)
to ensure the proper handling of the extrema of each sub-context.

3.3 Reducing the Context

Proposition 7. Let (G′,M ′, I ′) be formed from (G,M, I) by removing object
set γs, attribute set µt, and all edges incident on either. Then 〈B(G′,M ′, I ′);≤〉
is order isomorphic to 〈B(G,M, I);≤〉.
Proposition 8. Let (G′,M ′, I ′) be formed from (G,M, I) by removing object set
γt, attribute set µs, and all edges incident on either. Then 〈B(G′,M ′, I ′);≤〉 is
order isomorphic to 〈B(G,M, I);≤〉 iff the supremum and infimum of B(G,M, I)
have more than one lower and upper neighbour respectively.

Propositions 7 and 8 involve the application of row and column reduction
[5] to the objects and attributes for which the extrema are object and attribute
concepts. They allow us to safely remove from the context all fully-connected
attributes and objects, and in many cases any objects and attributes which are
isolated after this removal.
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Fig. 3: Hasse diagram for the context in Figure 1 showing partitioning of its
maximal bicliques. Figure 3b adds an inclusion tree layout (nested containers)
to illustrate the recursive execution of Carve().

Figure 4a shows the connected components of the bigraph in Figure 2a after
removal of the universal attribute G and its incident edges. Object 10 is now iso-
lated, and cannot therefore participate in a biclique. Figure 4b shows the Hasse
diagram for this sub-context after removal of both G and 10. As indicated by
the shaded containers, the maximal bicliques are partitioned into two sets, cor-
responding to the two remaining connected components of the bigraph, between
which there are no connections. Comparison of Figures 4b and 2b confirms that
the lattices before and after extremum reduction are order isomorphic. Since the
supremum has more than one lower neighbour, removal of object 10 satisfies the
condition of Proposition 8 for lattice isomorphism.

Let (G′,M ′, I ′) denote the result of applying Propositions 7 and 8 to (G,M, I).
The extrema of this extremum-reduced context are no longer object or attribute
concepts, and accordingly have no labels. Whereas the concept lattices for (G,M, I)
and (G′,M ′, I ′) are order isomorphic, the corresponding lattice digraphs will
therefore differ in the labelling of the supremum and infimum. Restoring these
labels, which are now stored in γs, µs, γt and µt, converts the lattice digraph
for (G′,M ′, I ′) into that for (G,M, I). For example, restoring the label sets
γt = {10} and µt = {G} to the supremum converts the Hasse diagram in Fig-
ure 4b to that in Figure 2b.

3.4 Recursive Partitioning

We have seen that the removal of any universal attributes and objects, as per
Proposition 7, can disconnect the context bigraph, and thereby pave the way for
partitioning of (G,M, I). If (G,M, I) is instead a sub-context resulting from a
previous partition, removal of these objects and attributes may facilitate parti-
tioning of that sub-context, and hence recursive partitioning of the global con-
text.
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Fig. 4: Removal of attribute G from the bigraph in Figure 2a reveals new con-
nected components and a corresponding partition of its maximal bicliques.

The execution of a procedure which removes from the context bigraph the ob-
jects and attributes identified in Propositions 7 and 8, along with their adjacent
edges, identifies the connected components in the remaining context bi-graph,
and calls itself to process each of the identified components, is described by
its recursion tree. Figure 5 shows this tree superimposed on the context bigraph
from Figure 1 using an inclusion tree layout. Each rounded rectangular container
corresponds to a vertex in the recursion tree. A container includes another iff
the former corresponds to an ancestor of the latter in the recursion tree.

This tree also constitutes a partition tree for the context bigraph, in which
the non-leaf nodes are labelled with the objects γt ∪ γs and attributes µt ∪ µs
associated with the extrema of the corresponding sub-context. In Figure 5, these
objects and attributes appear only in non-leaf containers.

The leaf nodes of this tree correspond to sub-contexts whose lattice digraphs
are either trivial – consisting of one or two vertices – or otherwise not amenable to
further partitioning. Each non-trivial leaf-node sub-context must be processed
by a suitable FCA algorithm which returns the corresponding lattice digraph
labelled as per (6). The resultant single-source, single-sink digraphs form the
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Fig. 5: Context bigraph from Figure 1 with recursion tree superimposed using
inclusion tree layout.
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building blocks which must then be appropriately assembled and interconnected
to produce the lattice digraph for the overall context. Importantly, this assembly
can be performed progressively in a single pass back up the recursion tree.

3.5 Assembling the Lattice Digraph

Assembling the lattice digraph for a given sub-context involves either connecting
or merging the source (infimum) and sink (supremum) vertices s′, t′ of the di-
graphs for each of its immediate sub-contexts with their counterparts s, t for the
current sub-context. In this section we examine the circumstances under which
merging and connection, respectively, are appropriate.

Proposition 9. Let (G′,M ′, I ′) be an extremum-reduced context consisting of
two or more connected components. Let (A,B) be the supremum [infimum] of one
of these connected components, (Gi,Mi, Ii), and let t′ [s′] be the corresponding
vertex of the lattice digraph for that sub-context. Then (A,B) ∈ B(G′,M ′, I ′) iff
µt′ 6= ∅ [γs′ 6= ∅].

If the supremum [infimum] of (Gi,Mi, Ii) has an attribute [object] label, then
an arc is added to connect it to its counterpart in the parent context (G′,M ′, I ′).
This ensures that each maximal biclique in (Gi,Mi, Ii) has a directed path to
the lattice supremum, and from the infimum, of the parent context. If the supre-
mum [infimum] of (Gi,Mi, Ii) does not have an attribute [object] label, it should
instead be merged with its counterpart in the parent context. The merge opera-
tion replaces two digraph vertices with a single vertex having the unions of their
upper neighbours, lower neighbours, attribute labels and object labels.

4 Carve

Algorithm 1 lists the Carve algorithm for simultaneous recursive partitioning
of a formal context and its corresponding lattice digraph. Carve()takes as input
a context bigraph (G,M, I) and returns, by reference to its source and sink
vertices, the corresponding lattice digraph, labelled as per (6). The Boolean
parameter φ represents the level of recursion, and should be set to zero for the
initial call. Carve() invokes the following functions:

FindComponents(G′,M ′, I ′): Takes as input a context bigraph (G′,M ′, I ′) and
returns an unordered set of its connected component bigraphs.

FCA(G′,M ′, I ′): Takes as input a formal context (G′,M ′, I ′) which cannot be
further decomposed by Carve() and returns the resultant lattice digraph.
This function can be implemented using any FCA algorithm (see e.g. [9,1])
which enumerates the concepts, calculates the transitive reduction of the
ordering relation between them, and calculates the labelling defined in (6).

Connect(a, b): Creates an arc from vertex a to vertex b of the lattice digraph.
Merge(a, b): Applied to lattice digraph vertices a and b, it modifies vertex b to

have label sets and adjacent arcs, both incoming and outgoing, which are
the unions of those of a and b. Thus vertex a is merged with vertex b.
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Algorithm 1 Build lattice digraph through recursive partitioning of context.

Require: I ⊆ G×M
Ensure: (s, t) are (source,sink) vertices of labelled lattice digraph for (G,M, I)
1: Function (s, t) = Carve(G,M, I, φ)
2: µt ← G.

3: if µt = M then
4: γt ← G
5: return (t, t)
6: end if
7: if µt 6= ∅ or φ = 0 then
8: γt ← {g ∈ G|g. = µt}
9: else

10: γt ← ∅
11: end if
12: γs ←M/

13: if γs 6= ∅ or φ = 0 then
14: µs ← {m ∈M |m/ = γs}
15: else
16: µs ← ∅
17: end if
18: M ′ ←M \ (µt ∪ µs)
19: G′ ← G \ (γt ∪ γs)
20: if M ′ = ∅ or G′ = ∅ then
21: Connect(s, t)
22: return (s, t)
23: end if
24: I ′ ← I ∩ (G′ ×M ′)
25: if µt 6= ∅ or γs 6= ∅ or φ = 0 then
26: Q← FindComponents(G′,M ′, I ′)
27: else
28: Q← {(G,M, I)}
29: end if
30: if |Q| = 1 and γt = ∅ and µs = ∅ then
31: (s′, t′) ← FCA(G′,M ′, I ′)
32: Merge(t′, t)
33: Merge(s′, s)
34: else
35: for all (Gi,Mi, Ii) ∈ Q do
36: (s′, t′) ← Carve(Gi,Mi, Ii, 1)
37: if µt′ 6= ∅ then
38: Connect(t′, t)
39: else
40: Merge(t′, t)
41: end if
42: if γs′ 6= ∅ then
43: Connect(s, s′)
44: else
45: Merge(s′, s)
46: end if
47: end for
48: end if
49: return (s, t)
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Lines 2 to 24 of Carve() create and label the source and sink vertices of the
sub-lattice digraph, return the lattice digraph in cases where it is trivial, and
if not, convert the context (G,M, I) to its extremum-reduced form (G′,M ′, I ′).
Lines 25 to 29 partition (G′,M ′, I ′) into its connected component bigraphs.
Lines 30 to 48 calculate the sub-lattice digraph for each of these components
and connect or merge it into the source and sink vertices of the lattice digraph
for (G,M, I). From the perspective of FCA(), Carve() is a pre-processor which
reduces the context to an extremum-reduced, connected bigraph, and a post-
processor which connects the resultant sub-lattice digraph into that for the orig-
inal context.

Figure 3b uses an inclusion tree layout to illustrates the recursive execution
of Carve() when applied to the context of Figure 1. The containers are filled
with the same colours as their counterparts in Figure 5, in which the same
recursion tree is overlaid on the context bigraph. The single vertex in the yellow
container is returned by line 5 of Algorithm 1. Those in the light grey container
are generated by a call to FCA()at line 31, and those pairs in the remaining three
leaf-node containers are returned by line 22.

5 Related Work

Berry et al. [3] proposed a divide-and-conquer approach to FCA based on the
identification of a vertex separator known as a clique minimal separator. A clique
minimal separator is an attribute or an object, or an attribute-object pair, whose
removal disconnects the context bigraph. The vertices of a bigraph having one
or more such separators are “partitioned” by notionally removing each separator
in turn, and replicating it across each of the adjacent connected components of
the resultant bigraph. Berry et al. [3] nominated an algorithm which efficiently
identifies these separators and described a method for combining the concept
lattices produced by applying FCA to each resultant sub-context.

Decomposition using clique minimal separators produces a set of atomic bi-
graphs which by definition contain no clique minimal separators. FCA of each
atomic bigraph produces corresponding lattice digraphs from which the original
lattice digraph is reconstructed. In contrast with Carve, the resultant decompo-
sition of the lattice digraph is not hierarchical, and reconstruction is complicated,
inter alia, by the fact that edges can be required between constituent digraphs.

Valtchev et al. [11] described a procedure for recursive binary partitioning
of an arbitrary formal context and the assembly of the overall lattice digraph
from the digraphs arising from the sub-contexts. Only the attribute [object] set
is partitioned, so that each sub-context contains all objects [attributes]. Whilst
postulating that an “optimal” partition of the context would be one which min-
imised the size of the component digraphs, Valtchev et al. [11] left open the
question of how to choose such a partition. In contrast, Carve discovers and ex-
ploits the structure of amenable contexts to recursively partition both the object
and attribute sets, and significantly simplifies digraph assembly for this special
case.
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6 Summary

This paper has established the theoretical foundations of, and then detailed, the
Carve algorithm, a divide-and-conquer technique for discovering and exploit-
ing hierarchical structure in a formal context. Hierarchical partitioning of both
the formal context and the resultant concept lattice have been used to achieve
efficient computation of the lattice digraph. The discovered structure can be
exploited for improved layout of, and interaction with, the Hasse diagram [10].

References

1. Andrews, S.: A ‘best-of-breed’ approach for designing a fast algorithm for com-
puting fixpoints of Galois connections. Information Sciences 295, 633–649 (2015).
https://doi.org/10.1016/j.ins.2014.10.011

2. Baklouti, F., Levy, G.: Parallel algorithms for general Galois lattices building. In:
Proc. Workshop on Distributed Data and Structures (WDAS 2003). Proceedings
in Informatics, Carleton Scientific (2003)

3. Berry, A., Pogorelcnik, R., Sigayret, A.: Vertical decomposition of a lattice us-
ing clique separators. In: Napoli, A., Vychodil, V. (eds.) Concept Lattices and
their Applications (CLA 2011). CEUR Workshop Proceedings, vol. 959, pp. 15–29
(2011), http://ceur-ws.org/Vol-959/

4. Bhatti, M.U., Anquetil, N., Huchard, M., Ducasse, S.: A catalog of patterns for con-
cept lattice interpretation in software reengineering. In: Zhang, D., Reformat, M.,
Gokhale, S., Maldonado, J.C. (eds.) Proc. 24th Intl. Conf. Software Engineering &
Knowledge Engineering (SEKE’2012). pp. 118–124. Knowledge Systems Institute
Graduate School (2012)

5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

6. Gaume, B., Navarro, E., Prade, H.: A parallel between extended Formal Concept
Analysis and bipartite graphs analysis. In: Hüllermeier, E., Kruse, R., Hoffmann,
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Abstract. This paper presents our work on mining visitor trajectories
in Hecht Museum (Haifa, Israel), within the framework of CrossCult Eu-
ropean Project about cultural heritage. We present a theoretical and
practical research work about the characterization of visitor trajectories
and the mining of these trajectories as sequences. The mining process
is based on two approaches in the framework of FCA, namely the min-
ing of subsequences without any constraint and the mining of frequent
contiguous subsequences. Both approaches are based on pattern struc-
tures. In parallel, a similarity measure allows us to build a hierarchical
classification which is used for interpretation and characterization of the
trajectories w.r.t. four well-known visiting styles.

Keywords: FCA, pattern structures, sequence clustering, sequential
pattern mining

1 Introduction

This paper is related to the CrossCult European Project about cultural heritage
(http://www.crosscult.eu/). The general idea of CrossCult is to support the
emergence of a European cultural heritage by allowing visitors in different loca-
tions (e.g. museum, city, archaeological site) to consider their visit at a European
level by using adapted computer-based devices.

In this project, we are mainly interested in the analysis of visitor trajecto-
ries and recommendation. The trajectory of a visitor in a specific location is
considered as a multi-dimensional sequence depending on a number of variables,
such as space (e.g. paths, rooms, environment), time (e.g. hour, day, season,
news), history and geography (e.g. town, region, country. . . ). Moreover, addi-
tional domain knowledge and general knowledge bases such as DBpedia, Free-
base or YAGO can be reused to draw inferences and improve the quality of both
analysis and recommendation.

Here, we have two main objectives, (i) the mining of visitor trajectories based
on sequence mining, and (ii) the characterization of a trajectory in terms of the
subsequences which are mined. We assume that the subsequences are related to
the visiting styles, the visit content, and the environment. Thus subsequences can

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 231–242,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
Olomouc, 2018.



be used for analyzing the trajectory of a visitor and for making recommendations
all along the visit. Moreover, the occurrences of some subsequences at a given
moment within a trajectory can witness a change of behavior –which triggers in
turn a change in the recommendations.

In the present paper, we discuss theoretical and practical work about the def-
inition of visitor trajectories and the mining of these trajectories as sequences.
The mining process is based on two approaches about sequence mining in Formal
Concept Analysis (FCA [1]): MRGS for “Mining Rare General Subsequences” [2]
and MFCS for “Mining Frequent Contiguous Subsequences” [3]. The first approach
mines rare subsequences in a general way, i.e. gaps may appear in the subse-
quences, while the second approach searches for frequent subsequences without
any gap (a kind of substrings). If the original paper about MRGS [2] was inter-
ested in rare subsequences, this is no more the case here and we work on frequent
subsequences as well. We also reuse the similarity measure simACS developed
for analyzing the trajectories of patients between hospitals [4,5]. This similarity
measure allows us to build a hierarchical classification that will play a role of
“reference classification”. For analyzing and interpreting the trajectories of visi-
tors, it is interesting to compare the outputs of MRGS and MFCS algorithms w.r.t.
the clustering produced by simACS . Moreover, these outputs and the cluster-
ing as well are analyzed thanks to four theoretical visiting styles, namely “ant”,
“butterfly”, “fish” and “grasshopper” [6].

Several challenges are faced in this research work in the FCA framework:
the mining of complex sequential data and dynamics in adapting two algorithms
based on pattern structures, the analysis of the trajectories based on jumping
emerging patterns and clustering. Here, data are not necessarily big but are
rather complex and multidimensional and this should be taken into account.

The paper is organized as follows. Section 2 recalls the basic definitions about
sequence mining that are useful for understanding the present work. Then, Sect. 3
presents the characteristics of the dataset that was used as a basis for the cur-
rent work. In Sect. 5 and Sect. 6, we present first the application of clustering on
data enabling to build classes of visitors, and then the application of two algo-
rithms for mining interesting subsequences. Finally, in Sect. 7, an interpretation
of the results and a discussion on the characterization of the visitor trajectories
conclude the paper.

2 Sequence Mining

2.1 Basic Definitions

Pattern mining is the task of finding repeated occurrences in a dataset. For ex-
ample, in a dataset about customer transactions, an objective can be to find a
set of items that are frequently ordered in a single transaction. Another com-
plex objective is to detect a set of items that are likely ordered within certain
transactions. These specific tasks in pattern mining are related to sequential
pattern mining. We recall below the most important definitions that we need in
the following.
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Definition 1. A sequence is an ordered list 〈s1s2 . . . sm〉, where si is an itemset
{i1, . . . , in}. Here, m is the size of a sequence. The length of a sequence is the
total number of items, or

∑ |si|.

For example, 〈{a, b}{a, c, d}〉 is a sequence with size 2, since it contains two
itemsets. Its length is 5.

Definition 2. A sequence s = 〈s1s2 . . . sm〉 is a subsequence of s′ = 〈s′1s′2 . . . s′n〉,
denoted by s � s′, if there exist indices 1 ≤ i1 < i2 < . . . < im ≤ n such that
sj ⊆ s′ij for all j = 1 . . .m and m ≤ n.

Therefore, the sequence 〈{a}{d}〉 is a subsequence of 〈{a, b}{a, c, d}〉, while
sequence 〈{c}{d}〉 is not.

One way of evaluating the quality of a subsequence is to compute the sup-
port of the subsequence. Given a user-defined threshold, the subsequence can be
“frequent”, i.e. the support is above the threshold, or “rare”, i.e. the support is
below the threshold.

Definition 3. Let S be a sequential database. The support of a sequence s in
S is: support(s,S) = |{si ∈ S; s � si}|

There exist algorithms which can retrieve all frequent sequences [7,8]. A long
sequence can have a combinatorial number of subsequences. Thus, if a long
sequence is frequent, these algorithms return all of its subsequences. This leads
to the retrieval of many uninteresting patterns. This issue has been studied
in [9,10,11] by introducing the concept of “closed sequence”. They narrow the
output by disregarding sequences which have another supersequence with the
same support (hence not closed).

Beside mining frequent sequences, another complex task is clustering. To
achieve such a task, a distance or a similarity measure between two sequences has
to be defined. The similarity measure simACS was proposed in [5], which counts
the number of all common subsequences (ACS). This measure is formulated as:

simACS(Si, Sj) =
φC(Si, Sj)

max{φD(Si), φD(Sj)}
(1)

where φC(Si, Sj) is the number of all common distinct subsequences between Si
and Sj , while φD(Si) is the number of all distinct subsequences of Si.

In this paper, we reuse simACS with a restriction. Actually, we consider
sequences whose itemsets include only one item. For simplicity, we omit the
curly brackets to describe an itemset. Therefore we will write 〈{a}{d}{e}〉 as
〈a, d, e〉.

2.2 Sequence Mining in FCA

In this section we briefly present the two algorithms that are adapted for mining
the trajectories of visitors in a museum, namely MFCS [3] and MRGS [2]. The names
of the algorithms are not used as such in the papers but here we use them by
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commodity. Both algorithms are original and very efficient, and among the few
algorithms performing sequence mining in the framework of FCA.

MFCS was originally introduced for mining trajectories of patients in hospi-
tals. The algorithm is based on pattern structures and projections, and stability
as well. One important characteristic of MFCS is that it mines contiguous sub-
sequences, or stated differently, subsequences without any gap between items.
This is due to the fact that physicians are mainly interested in consecutive events
when analyzing healthcare trajectories. In addition, but this is not needed in our
framework, MFCS is able to take into account a partial ordering – given by domain
knowledge for example – defined on the items composing the sequences.

MRGS is also a sequence miner based on pattern structures but with a different
purpose. The objective of MRGS is to mine rare rather than frequent subsequences,
and in particular long subsequences with special characteristics. The algorithm
is based on a specific pattern structure of subsequences, where the similarity
operation is based on the discovery of common close subsequences (SCCS oper-
ation illustrated in a next section). The SCCS operation is based on a directed
graph of alignments (DAG of alignments) which guide the mining of common
subsequences. The algorithm shows very good performances and is most proba-
bly one of the few algorithms whose objective is the mining of rare subsequences.
In our framework, we adapted MRGS and the support threshold for comparison
purposes with frequent subsequences. However, we will use in our context MRGS

as a standard sequence miner and we will be interested in frequent subsequences.

3 The Dataset of Museum Visitors

3.1 The Museum

In the framework of the CrossCult project, we are working on a specific dataset
about the trajectories of 254 visitors in Hecht Museum in Haifa, Israel [12]. In
the raw dataset, a visitor trajectory contains a list of visited items, where each
visit is composed of three elements namely “start time”, “end time”, and “item
name”. An example is presented in Table 1.

Table 1: An example of one visitor trajectory

Start Finish Item

12:55:39 12:58:05 Crafts and Arts

12:58:06 12:58:22 Religion and Cult

12:58:22 12:58:27 Building Methods and Facilities

12:58:29 13:05:09 Wooden Tools

A visitor can have visits with various time lengths. In order to obtain more
meaningful results and to reduce the complexity, we only consider visits last-
ing at least 90 seconds, but this is a parameter that can be relaxed or more
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constrained. Thirty-eight trajectories have no visit more than this threshold,
so they are ignored, leaving us with 216 trajectories. Moreover, we model each
trajectory as a sequence of visited items. Therefore, for trajectory in Table 1,
the corresponding sequence is 〈Crafts and Arts, Wooden Tools〉. This prepro-
cessing results in sequences of various size. Forty-five sequences have only one
itemset, while three sequences have more than 15 itemsets.

Table 2: Grouping of museum items

Category Items and their ID

1 Entrance Reuben Hecht (101), Symbols Jewish Menorah (102),

Persian Cult (103), Jerusalem Photo (104)

· · · · · ·
8 Upper Floor Entrance (801), Coins (802), Seven Species (803),

Oil Lamps (804), Weights (805), Temple Mount (806),

Jerusalem (807), Greece Egypt (808), Cyprus (809), Gems (810)

We group the museum items according to their location, so that we obtain
8 categories of items. Some of them are listed in Table 2. We convert the raw
dataset into sequences of items, where each item is represented by its ID. We
define the IDs such that we can infer the category of an item by its first digit.
Therefore, we obtain a dataset of 216 sequences of visitor trajectories – named
V1–V216 – where each sequence is composed by a list of IDs, as illustrated in
Table 3.

Table 3: Examples of visitor trajectories

Visitor Trajectory

V1 〈101, 101, 401, 704〉
V2 〈102, 402, 808, 206, 808〉
V3 〈302, 102, 201, 302, 705, 402, 802〉
V4 〈104, 704, 602, 302, 402, 103〉

3.2 The Four Visiting Styles

In a seminal work about the typing of visitor styles in a museum [6], four main
behaviors have been detected and described, leading to different recommenda-
tions all along a visit [13,14]. These four styles are summarized below:

– The ant denotes a visitor who will surely see all the works following their
location order in the museum. Then the recommendation can be the following
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item, but depending also on some environmental factors such as the crowd
in the museum, the accessibility of the item and the fatigue of the visitor.

– The grasshopper denotes a visitor who will see only certain artworks, jumping
from one to the other. Then, to encourage such a person to visit more items,
the recommendation can be to visit items having a content similar to items
already visited.

– The butterfly denotes a visitor wanting to discover some and not all artworks,
without having any exact preferences. Then, the recommendation is open
and can be based on surprise (items which are very different one from the
other).

– The fish denotes a visitor who does not feel that much interested in the
artworks and stays most of the time in the center of the rooms without any
precise objective. Then the recommendation can be to visit the most famous
items in the museum which are the closer to the current visitor location, for
encouraging the visitor to continue the visit and gain more interest.

Indeed, a visitor can change his/her style during a visit and other elements
may be of importance, e.g. crowd or fatigue of the visitor.

4 The Workflow for Analyzing the Trajectories

In the following, one objective is to map specific subsequences included in the
visitor trajectories to each visiting style for characterizing more precisely the
style and then making smarter recommendations. To identify the behavior of
each visitor, we propose the following workflow:

1. Cluster the visitor trajectories and attach a label for each visitor (Sect. 5).
2. Create two concept lattices using MFCS and MRGS over the whole dataset

(Sect. 6.1).
3. From the two lattices, find jumping emerging patterns (JEPs) for each label

(Sect. 7.2).
4. Based on their JEPs, these labels are then mapped into four visiting styles

that has been explained in Sect. 3.2.

5 The Clustering of Trajectories

In this first experiment, we reuse the simACS similarity measure for clustering
the visitor trajectories. The idea is to check whether it is possible to distinguish
the four visiting styles introduced in Section 3.2. We applied hierarchical cluster-
ing1 based on simACS to build a distance matrix between individuals. From the
resulting dendrogram, we retained 5 clusters denoted by “A”, “B”, “C”, “D”,
and “E”. Four of them are expected to match the four visiting patterns, namely
ant, butterfly, fish, and grasshopper. The last cluster will gather all non-classified

1 We used the hclust method from the R software [15].
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trajectories. These five clusters have various sizes. Cluster “A”, “B”, “C”, “D”,
and “E” have 11, 11, 59, 102, and 33 visitors respectively.

Actually, it is not easy to directly match the five clusters to corresponding vis-
iting styles. For doing so, we will analyze the subsequences that can be attached
to each cluster of trajectories. The benefit of the clustering is actually to provide
a label among “A”, “B”, “C”, “D”, and “E” to the visitors. Thanks to these
labels, we can perform a search for the so-called “jumping emerging patterns”
and attach a characterization to the clusters based on the mined subsequences.

6 The Mining of Trajectories Considered as Sequences

6.1 Mining Subsequences with MFCS and MRGS

Below, we explain the application of the MFCS and MRGS algorithms to the mu-
seum dataset and the building of an associated concept lattice. Moreover, as
will be discussed in the next section, the jumping sequential patterns which are
mined will help us to characterize the visitor trajectories.

In MFCS and MRGS, pattern structures are used for mining sequences. The
similarity operator (u) between any two sets of sequences is defined as the set
of closed common subsequences (SCCS) in the two input sequences. Then, given
two sequences, say S1 = 〈401,502,503〉 and S2 = 〈401,503,502〉, the similarity
between these descriptions is:

δ(S1) u δ(S2) = {〈401,502,503〉} u {〈401,503,502〉}
= {〈401,502〉, 〈401,503〉}

In the dataset, the items are grouped into categories and the SCCS calcu-
lation is performed, checking whether two items belong to the same category.
Using the MFCS algorithm [3] it becomes:

δ(S1) u δ(S2) = {〈401,502,503〉} u {〈401,503,502〉}
= {〈502〉, 〈503〉, 〈401,5,5〉}

It should be noticed that MFCS mines contiguous subsequences, i.e. in Defini-
tion 2, ik = ik−1 + 1 for all k ∈ {2, 3, . . . ,m}.

In parallel, the default similarity operator of MRGS can be modified to ac-
commodate our needs, such that non-contiguous common subsequences can be
mined:

δ(S1) u δ(S2) = {〈401,502,503〉} u {〈401,503,502〉}
= {〈401,502〉, 〈401,503〉, 〈401,5,5〉}

Then, based either on MFCS or MRGS, a concept has an extent including a set
of trajectories and an intent including a set of common subsequences. Again, it
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should be noticed that, based on whether a subsequence is contiguous or not,
the resulting concept lattices are different.

For example, the concepts corresponding to Table 3 are shown in Table 4.
Notice that both algorithms obtain a concept whose extent is V2, V3, V4, albeit
with different intent. Based on MRGS, the common subsequence of V2, V3, V4 is
〈1, 402〉, while according to MFCS, their common subsequences are 〈1〉 and 〈402〉.
This is because items 1 and 402 are not contiguous in V3 and V4.

Table 4: The concepts that are computed by of MFCS and MRGS from four visitors
in Table 3

Extent Intent (MFCS) Intent (MRGS)

V1 〈101,101,401,704〉
V2 〈102,402,808,206,808〉
V3 〈302,102,201,302,705,402,802〉
V4 〈104,704,602,302,402,103〉
V1,2 〈1,4〉 not present
V1,4 〈1〉, 〈4〉, 〈704〉 〈1,1〉, 〈1,4〉, 〈1,704〉
V2,3 〈2〉, 〈102〉, 〈402,8〉 〈102,402,8〉, 〈102,2,8〉
V3,4 〈1〉, 〈302〉, 〈402〉, 〈7〉 〈1,302,402〉, 〈302,1〉, 〈1,7,402〉
V1,3,4 〈1〉, 〈4〉, 〈7〉 〈1,4〉, 〈1,7〉
V2,3,4 〈1〉, 〈402〉 〈1,402〉
V1,2,3,4 〈1〉, 〈4〉 〈1,4〉

6.2 Jumping Emerging Patterns

FCA is a non supervised classification process that can be turned into a super-
vised process thanks to the adding of a target attribute in the context, generally
corresponding to a target class. Then the idea is to search for the so-called
“Jumping Emerging Patterns” (JEPs) [16]. We have already applied this ap-
proach in [17] for analyzing and characterizing clusters of biological inhibitors.
Here we adapt the same idea for characterizing this time the clusters of visitors
discovered with the similarity measure simACS .

More precisely, five clusters are discovered by classifying visitor trajectories
with simACS . These same trajectories are then considered as sequences com-
posed of subsequences. Then a set of characteristic subsequences is extracted
and these subsequences are used as “attributes” in a formal context where ob-
jects are visitor trajectories. The resulting formal context is completed with an
extra attribute corresponding to the “cluster information”, i.e. the cluster in
which the trajectory is classified according to simACS . A concept lattice can
then be built from this completed context.

More interestingly, the cluster information is used for characterizing the con-
cepts whose extents include trajectories of a single cluster. The intents – made
of subsequences – of these particular concepts are JEPs, and as such they can
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be used to characterize the corresponding clusters. For example, if the extent
of the concept ({V103, V165, V188}, {〈4〉, 〈1〉, 〈306〉, 〈701,707〉}) includes visitors
from cluster B only, then its intent is JEPs for that cluster.

7 Discussion

7.1 About Interesting Subsequences

The first part of Table 5 shows some interesting contiguous subsequences from
4677 concepts discovered by MFCS. Thirty-three persons are visiting three items
contiguously in category 1 of items located near the entrance. This is interesting
to be noticed, as visitors are likely to spend more time in rooms located near the
entrance, because they are arriving, they have high interest, and they are not
tired. Then items of importance could be placed near the entrance for getting
sufficient interest from visitors.

Thirteen people visit an item in category 7 – this category corresponds to
items in the room of “Ancient Ship” which is one of the most famous items
in this museum – right after an item in category 1. This is a characteristic of
grasshopper, because 1 and 7 are separated by many other categories. These
visitors have a specific interest for the “Ancient Ship” in the museum, since they
skip all the items located between entrance and “Ancient Ship” (both categories
can be considered as “far” from each others).

From 8019 concepts obtained by MRGS, some subsequences are presented in
the second part of Table 5. The subsequence 〈1,1〉 has a support of 69 with
MFCS, and it has quite a similar support (66) with MRGS. Then we can draw the
same conclusion, meaning that when a person visits two items in category 1, it is
likely in continuation (to be compared with the preceding subsequence 〈1,1,1〉).

Now, more interestingly, there are 38 persons visiting an item in category 3
after category 1, while much less persons (9) are doing the opposite. A similar
conclusion can also be drawn with pairs 〈4,7〉 (31) and 〈7,4〉 (11). Based on such
an observation, we can infer that visiting a museum is an “oriented activity”and
that some directions are more preferred than others or “naturally followed”,
just as it is the case for the ordering of the rooms existing in the museum. By
contrast, only a few visitors are quitting the “natural flow” and go “backward”.
Among these visitors, we can probably find visitors searching for more precision
about preceding visited items.

7.2 Cluster Characterization

Now we are interested in characterizing the five clusters that were introduced in
the previous section. For doing so, JEPs are searched in the two concept lattices
obtained with MFCS and MRGS algorithms. Some of these concepts are listed in
Table 6 and Table 7.

First, from both MFCS and MRGS, we cannot find any satisfying concept for
JEP of cluster “E”. This is because among all the concepts whose extent is
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Table 5: Some interesting subsequences mined by MFCS (left) and MRGS (right)

Subsequence Support

〈1,1,1〉 33
〈1,7〉 13
〈1,1〉 66

Subsequence Support

〈1,3〉 38
〈3,1〉 9
〈4,7〉 31
〈7,4〉 11
〈1,1〉 69

exclusively from cluster “E”, none of them has more than one visitor. If we
consider the dataset, among 33 members of cluster “E”, 32 of them visit less
than 2 items during their whole visit. We can assume that they are visitors that
are not really interested in visiting the museum. Therefore, we can quote safely
label this cluster as fish.

Cluster “D” is more easily distinguishable. Based on subsequences of concept
FD2–FD4, many visitors in this class skip some items. Also, in concept RD1 and
RD2, some of them visit other items after item 701. This is not a natural direction,
because items in category 7 are located farther from the entrance than items in
category 4 or 5. We can interpret the visitors of this cluster as grasshopper, since
they “jump” from one item to another.

Clusters “A”, “B”, and “C” are relatively similar to each other. The visitors
associated to these clusters follow an ant behavior: a natural flow (based on RA1–
RC1) and no “jump” (based on FA1–FC2). However, in FC3, three visitors visit
101, then 102, then back again to 101, indicating rather a butterfly behavior.

Table 6: Interesting concepts discovered by the MFCS algorithm

Concept ID Extent Intent Support Cluster

FA1 {V70, V107, V121, V133, V201, V202} {〈1,1,402〉, 〈103〉, 〈2〉} 6 A
FA2 {V70, V93, V107, V121} {〈402〉, 〈103,104〉} 4 A
FB1 {V103, V165, V188} {〈4〉, 〈1〉, 〈306〉, 〈701,707〉} 3 B
FC1 {V4, V8, V28, V32, V84, V152} {〈102〉, 〈101,1,101〉} 6 C
FC2 {V53, V152, V169, V189, V190, V203} {〈7〉, 〈102,4〉} 6 C
FC3 {V4, V8, V32} {〈101,102,101〉} 3 C
FD1 {V54, V105, V139, V168} {〈202,4〉} 4 D
FD2 {V139, V168} {〈202,405,701〉} 2 D
FD3 {V46, V47} {〈101,602〉} 2 D
FD4 {V89, V163} {〈602,203〉} 2 D

7.3 Conclusion

In this article, we have presented our experiments in mining visitor trajecto-
ries that are modeled as sequences of items. We incorporated a classification of
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Table 7: Interesting concepts discovered by the MRGS algorithm

Concept ID Extent Intent Support Cluster

RA1 {V70, V107, V121, V133, {〈1,1,402,2〉, 〈1,1,4〉, 6 A
V201, V202} 〈103,402,2〉, 〈103,4〉}

RB1 {V142, V183, V192} {〈102,1,1,1,1〉, 〈102,103,1,1〉, 3 B
〈1,1,1,1,1〉, 〈1,103,1,1〉}

RC1 {V4, V8, V28, V84, V152} {〈1,1,1,101〉, 〈1,101,1,101〉, 5 C
〈1,1,1,1〉, 〈1,101,1,1〉,
〈101,1,1,1〉, 〈101,101,1,1〉,
〈101,101,101〉, 〈102,101〉, 〈102,1〉}

RD1 {V71, V79} {〈701,504〉} 2 D
RD2 {V97, V98} {〈701,406〉} 2 D

museum items and built a concept lattice using pattern structures. We applied
two sequence miners based on FCA to the visitor trajectories, namely MFCS and
MRGS, to discover interesting contiguous and general subsequences.

Our result highlight some interesting patterns that may define visitor behav-
iors. This can help museum researchers to analyze and evaluate the placement
of items and the visiting styles. Moreover, we have also studied the possibility of
clustering the visitors based on a concept lattice. These clusters can be analyzed
to build a recommendation system for future visitors, but we did not yet study
this aspect until now.

In this paper, we only included in the sequences partial information about
the museum. More interesting results can be obtained if other elements are taken
into account, such as more general knowledge about history and geography, and
duration and time of the visit. . . Furthermore, the selection of interesting con-
cepts can be also guided by computing the stability of the concepts [18]. Finally,
from a more dynamic point of view, ongoing information such as comments and
state of the visitor during the visit could be also considered for analysis and
in-line recommendation.
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Abstract. Pattern mining consists in discovering interesting patterns
in data. For that, algorithms rely on smart techniques for enumerating
the pattern search space and, generally, focus on compressed collections
of patterns (e.g. closed patterns), to avoid redundancy. Formal Concept
Analysis offers a generic framework, called pattern structures, to formal-
ize many types of patterns, such as closed itemsets, intervals, graph and
sequence sets. Additionally, it provides generic algorithms to enumerate
all closed patterns and only them. The only condition is that the pattern
space is a meet-semilattice, which, unfortunately does not always hold
(e.g., for sequential and graph patterns). In this paper, we discuss pattern
setups, a tool that models pattern search spaces relying only on posets.
Subsequently, we revisit some techniques transforming pattern setups to
a pattern structure using set of patterns, namely completions, and we
state a necessary and sufficient condition for a pattern setup completion
using antichains to be a pattern structure.

1 Introduction

Pattern mining is the task of finding interesting patterns in a predefined search
space. A generic tool for defining such a pattern search space is pattern struc-
tures [10,14] based on Formal Concept Analysis (FCA) [9]. Indeed, itemsets,
interval [12], convex [3], partition [2] pattern spaces among others can be mod-
eled within the pattern structure framework. However, since pattern structures
rely on meet-semilattices, some pattern spaces that are only posets cannot be
“directly” defined using such a tool.

Fig. 1 depicts a dataset of 4 objects described by attribute "value" and la-
beled positive or negative. Consider the task of finding “good” rules d→ + in this
dataset with d a description given by attribute value. Rather than considering
the usual meet-semilattice of intervals [12]; descriptions d are restrained to inter-
vals of the form (v] and [v) or singleton {v} ⊆ R (see Fig. 1 - right). Descriptions
form a poset (D,⊇) but not a meet-semilattice. For instance, the set {{3}, {5}}
has not a meet, since lower bounds of {{3}, {5}} has two maximal elements w.r.t.
⊇ (i.e. [3) and (5]). Hence, the triple (G, (D,⊇), δ) with δ : g 7→ {value(g)} does

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 243–253,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
Olomouc, 2018.



object value label

g1 1 −
g2 3 +
g3 5 +
g4 9 −

g1 g4g2 g3

1 3 5 9

Description language:

value = v | v ∈ R
value ≤ v
value ≥ v

Fig. 1. Dataset (left), its representation in R with black dots representing positive
objects (center) and the description language (right).

not form a pattern structure [10] since {δ(g2), δ(g3)} = {{3}, {5}} has not a
meet. It does form actually a pattern setup [16] which is based on a poset.

Description spaces like the one in Fig. 1 are numerous. For instance, sequen-
tial patterns [1] ordered by “is subsequence of” do not form a meet-semilattice
[19] [7]. Sequential meet-semilattice in FCA [6] [7] refers usually to set of se-
quences rather than to the poset of sequences. Same holds for the graph
meet-semilattice from [13]. In general, the base pattern setup is transformed to
a pattern structure using sets of descriptions thus providing a richer space (lan-
guage). Such transformations are naturally called completions. For example, in
Fig. 1, restriction {value ≥ 3, value ≤ 5} is equivalent to 3 ≤ value ≤ 5 and
does not belong to the base description language.

Understanding properties of pattern setups independently from their com-
pletions is fundamental for answering many practical questions. For instance,
consider the question “What are the best descriptions covering all positive in-
stances?”. If better stands for more relevant than as in relevance theory
[11], the answer will be the two best incomparable rules value ≥ 3 → + and
value ≤ 5→ + rather than only one in the completion 3 ≤ value ≤ 5→ +.

In this paper, after recalling basic facts on pattern structures in Section 2,
we discuss the properties of a pattern setup in Section 3. Subsequently, Section 4
revisits pattern setup completions and states a necessary and sufficient condition
on a pattern setup to augment it to a pattern structure using antichains of
patterns [13,6,7]. We coin pattern setups verifying such a condition pattern hyper-
structures. The basic order-theoretic concepts we use in this paper are well-
presented in [18] and [9]. Table 1 resumes the used notations.

Table 1. Notations

℘(E) Powerset of E {S | S ⊆ E}
f [S] Image of S by f {f(s) | s ∈ S} ⊆ F with S ⊆ E and f : E → F

(D,v) Poset partially ordered set. Below S ⊆ D is a subset

↓ S Down closure {d ∈ D | (∃s ∈ S) d v s}. For s ∈ S : ↓ {s} , ↓ s
↑ S Up closure {d ∈ D | (∃s ∈ S) s v d}. For s ∈ S : ↑ {s} , ↑ s
S` Lower bounds {d ∈ D | (∀s ∈ S) d v s}. For s ∈ S : {s}` , s`

Su Upper bounds {d ∈ D | (∀s ∈ S) s v d}. For s ∈ S : {s}u , su

min(S) Minimal elements {s ∈ S | d ∈ S, d v s⇒ d = s}
max(S) Maximal elements {s ∈ S | d ∈ S, s v d⇒ d = s}d
S Meet greatest element of S` if exists (d ∈ S` ⇔ d v d

S)⊔
S Join smallest element of Su if exists (d ∈ Su ⇔ ⊔

S v d)
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2 Basic Definitions

In general, pattern search spaces are formalized by partially ordered sets. In this
paper, we call description space (language) or pattern space (language)
any poset D := (D,v). Elements of D are called descriptions or patterns. For
any c, d ∈ D, c v d is read “c subsumes d” or “c is less restrictive than d”.

Pattern structures is an extension of the basic FCA model [10]. Objects in
a pattern structure have descriptions in a meet-semilattice. Pattern setups [16]
generalize pattern structures by demanding only a partial order on descriptions.

Definition 1. A pattern setup is a triple P = (G,D, δ) where G is a set of
objects, D is a description space and δ : G → D is a mapping that takes each
object g ∈ G to a description δ(g) ∈ D. We say that an object g ∈ G realizes a
description d ∈ D or d covers g if d v δ(g). A pattern setup P is said to be a
pattern structure if every subset of δ[G] = {δ(g) | g ∈ G} has a meet in D.

Note that a necessary and sufficient condition on D to have a pattern struc-
ture (G,D,v) on any finite set of objects G and any mapping δ : G → D is that
D is a meet-semilattice with a top element (D has its greatest element).

In pattern structures, two derivation operators map posets (℘(G),⊆) and
(D,v) to each other. They are usually both denoted by (·)�. For more clarity
we use ext and int notation.

Definition 2. The extent operator of a pattern setup, denoted by ext, takes
each description d ∈ D to the set of objects in G realizing it. In the case the
pattern setup is a pattern structure, the intent operator, denoted by int, takes
a subset of objects A ⊆ G to the largest common description in D covering
them, with

d
representing the meet in D, we have:

ext : D → ℘(G), d 7→ {g ∈ G | d v δ(g)} int : ℘(G)→ D, A 7→
l

δ[A]

The size |ext(d)| is called the support of d and is denoted by support(d).

In a pattern structure P, the pair of operators (ext, int) forms a Galois
connection between posets (℘(G),⊆) and (D,v). Thus, ext ◦ int and int ◦ ext
form closure operators on the two posets and (ext[D],⊆) is a

⋂
-structure

(i.e. a complete lattice). Moreover, another complete lattice isomorphic to poset
(ext[D],⊆) is used. It is called pattern concept lattice and is denoted by
B(P) = (B(P),≤). Elements of B(P) are called pattern concepts and are
of the form (A, dA) with A = ext(dA) and dA = int(A). Pattern concepts are
ordered as follows: (A, dA) ≤ (B, dB)⇔ A ⊆ B ⇔ dB v dA.

3 Pattern Setups

Whereas basic FCA considers only binary data (descriptions are sets), pattern
structures can handle more complex languages. Nevertheless, it fails at consid-
ering some types of patterns, which do not make a semi-lattice. Before diving
into details, consider the following example.
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G δ(·)
g1 c→ a→ b
g2 c→ b→ b→ a
g3 a
g4 b→ b→ c

∅

{g1} {g2} {g4}

{g1, g2, g3}

{g2, g4}

{g1, g2, g4}
Fig. 2. The table (left) represents
the pattern setup considered in ex-
ample 1. The diagram (right) rep-
resents the poset (ext[D],⊆) (not
making a closure system).

Example 1. Let be the dataset with the set of objects G = {g1, g2, g3, g4} in Fig. 2
(left). The description space (D,v) contains all non empty sequences that can
be built using items in {a, b, c}. It is ordered by the relationship “is substring
of” (i.e. is subsequence of -without gaps-) denoted by v. Such an order does
not form a meet-semilattice. Indeed, consider sequences δ(g1) = c→ a→ b and
δ(g2) = c → b → b → a; clearly, their common lower bounds {δ(g1), δ(g2)}` =
{a, b, c} form an antichain and hence {δ(g1), δ(g2)} has no meet. It follows that
(G,D, δ) is a pattern setup but not a pattern structure.

Important Remark. Unless otherwise mentioned, in this paper P = (G,D, δ)
denotes a pattern setup where G is a non-empty finite set. Hence, theorems
and propositions in this paper are guaranteed to be valid only if G is finite.

It is clear that the extent operator (see Definition 2) can be used in the general
case of pattern setups since it requires only the order. However, the intent of a
set may not exist. We define here the cover operator.

Definition 3. We call cover operator, denoted by cov, the operator that takes
each subset A ⊆ G to the set of common descriptions in D covering them:

cov : ℘(G)→ ℘(D), A 7→ δ[A]` = {d ∈ D | (∀g ∈ A) d v δ(g)}
Note that ext and cov are order reversing mappings in a pattern setup:

(∀A,B ⊆ G)A ⊆ B ⇒ cov(B) ⊆ cov(A) and (∀c, d ∈ D)c v d⇒ ext(d) ⊆ ext(c).
Some sets of objects A ⊆ G can have no common descriptions covering them.

In other words, cov(A) = ∅. Definition 4 develops a categorization of sets A ⊆ G.

Definition 4. Let A be a subset of G. A is said to be an extent iff ∃d ∈ D |
A = ext(d). A is said to be coverable iff ∃d ∈ D : A ⊆ ext(d), otherwise it
is said to be non coverable. The set of all possible extents is denoted by Pext
and given by Pext = ext[D]. The set of coverable sets is given by ↓ Pext.
Example 2. Consider Fig. 2. Set A = {g2, g4} has cover cov(A) = {b, b → b, c}.
Moreover, A is an extent since ext(b→ b) = A. Set B = {g3} is not an extent
since the only covering description is “a” for which ext(a) = {g1, g2, g3} (B is
coverable). Set C = {g3, g4} is non coverable, since g3 and g4 do not have
common symbols.

Remark 1. As in pattern structures [10], pattern implication and object
implication can be defined thanks to extent and cover operators, respectively.
For c, d ∈ D, the pattern implication c → d holds if ext(c) ⊆ ext(d). Con-
versely, for A,B ⊆ G, the object implication A→ B holds if cov(A) ⊆ cov(B).
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3.1 On Maximal Descriptions in a Cover

In pattern structures, intent operator associates the largest common description
to a set of objects. However, cover operator takes a set of objects to the set of all
descriptions covering them. Such a set can be huge and needs to be “compressed”.
Since we have no guarantees of the existence of the largest common description,
a reasonable suggestion would be to consider the maximal ones.

Definition 5. The set of maximal descriptions covering a subset A ⊆ G,
denoted by covI(A), is given by:

covI(A) = max(cov(A)) = max(δ[A]`)

Remark 2. Maximal descriptions are sometimes called support-closed descrip-
tions [5]. A description d is said to be support-closed if ∀c ∈ D such that for
d v c and c 6= d we have support(c) < support(d) (i.e. ext(c) ( ext(d)).

3.2 On Upper Approximations of a Set

In pattern structures a description d ∈ D covering the set A will certainly
cover ext(int(A)). This observation is important when it comes to search for
positive or negative hypotheses in a labeled dataset [13] or in other words classi-
fication association rules [15]. Indeed, if G+ represents the whole set of positive
objects in the dataset G and if we want exactly one rule which covers all positive
instances, the best one (in terms of relevance [11]) will be the rule int(G+)→ +
with confidence |G+|/|ext(int(G+))|. For pattern structures ext(int(A)) is the
closure of A, in Rough Set Theory [17], ext(int(A)) can be seen as the upper
approximation of A in G. To have a similar notion for pattern setups, we define
what we call upper-approximation extents.

Definition 6. The set of upper-approximation extents of a subset A ⊆ G,
denoted by A, is given by: A = min({E ∈ ext[D] | A ⊆ E}) = min(↑ A∩ext[D]).

Example 3. Extent A = {g2, g4} in Fig. 2 has a unique upper-approximation (i.e.
A = {{g2, g4}}). Coverable subset B = {g1, g2} has multiple upper approxima-
tions B = {{g1, g2, g3}, {g1, g2, g4}}. Non coverable subset C = {g3, g4} has no
upper approximations (i.e. C = ∅). Proposition 1 formalizes these observations.

Proposition 1. For any A ⊆ G, we have:

A ∈ Pext ⇔ A = {A} (1) A ∈↓ Pext ⇔ A 6= ∅ (2) A = min(ext[cov(A)]) (3)

Proof. We demonstrate each property independently:
1. A ∈ ext[D]⇔ A = {A}: For (⇐), A ⊆ ext[D], thus A ∈ ext[D]. For (⇒), we

have A ∈↑ A ∩ ext[D] thus A = min(↑ A ∩ ext[D]) = {A}.
2. A ∈↓ ext[D] ⇔ A 6= ∅: For (⇒), we have A ∈↓ ext[D], that is ∃B ∈ ext[D]

s.t. A ⊆ B (i.e B ∈↑ A). Thus ↑ A∩ext[D] is not empty and so does A (since
↑ A∩ ext[D] is finite). For (⇐), we have A 6= ∅, that is ↑ A∩ ext[D] 6= ∅ thus
∃B ∈ ext[D] such that A ⊆ B thus A ∈↓ ext[D] =↓ Pext.

Pattern Setups and Their Completions 247



3. We show ext[cov(A)] =↑ A ∩ ext[D]. Let B ⊆ G. We have B ∈ ext[cov(A)]
⇔ ∃d ∈ cov(A) s.t. B = ext(d) ⇔ ∃d ∈ D ∀g ∈ A : d v δ(g) ⇔ ∃d ∈ D
A ⊆ ext(d) = B ⇔ B ∈ ext[D]∩ ↑ A. This concludes the proof. ut

For a set A ⊆ G s.t. A 6= ∅, any description covering A contains at least
elements of

⋂
A, the intersection of upper approximations of A.

Proposition 2. I : ℘(G) → ℘(G), A 7→ ⋂
A =

⋂{E ∈ ext[D] | A ⊆ E} is a
closure operator on (℘(G),⊆). Moreover, we have I(A) = A for any A ⊆ G.

Proof. In fact, this proposition is a direct application of the following Lemma.

Lemma 1. Let (P,≤) be a complete lattice with
∧

its meet and let E ⊆ P be a
subset. The mapping φE : P → P, p 7→ φE(p) =

∧ {e ∈ E | p ≤ e} is a closure
operator on (P,≤) and φE [P ] is a meet-structure in poset (P,≤).

We prove Lemma 1. (1) φE is extensive. Trivially p ∈ {e ∈ E | p ≤ e}` for
p ∈ P . Since the meet is the greatest element, we conclude: p ≤ φE(p). (2) φE
is monotone. Let p1, p2 ∈ P s.t. p1 ≤ p2, we have {e ∈ E | p2 ≤ e} ⊆ {e ∈
E | p1 ≤ e} thus {e ∈ E | p1 ≤ e}` ⊆ {e ∈ E | p2 ≤ e}`. We conclude that
φE(p1) ≤ φE(p2). (3) φE is idempotent. Let us show {e ∈ E | φE(p) ≤ e} =
{e ∈ E | p ≤ e}. Inclusion ⊆ is verified since p ≤ φE(p). Inclusion ⊇ comes from
the definition since φE(p) is a lower bound of {e ∈ E | p ≤ e}, then for any
e ∈ E such that p ≤ e we have φE(p) ≤ e. The idempotence is straightforward.

Proposition 2 is a corollary of Lemma 1 since (℘(G),⊆) is a complete lattice
in which the meet is the set intersection. Indeed, I , φext[D] is a closure operator

on (℘(G),⊆). I(A) = A comes directly from the previous idempotence proof. ut

Proposition 3. For any g ∈ G we have {g} = {ext(δ(g))}. That is, any single-
ton set {g} ⊆ G is coverable and has a unique upper-approximation.

Proof. Let g ∈ G, we have δ(g) ∈ cov({g}), thus ext(δ(g)) ∈ ext[cov({g})]. Let
us show that ext(δ(g)) is a lower bound of ext[cov({g})]. We have by definition:
cov({g}) = {d ∈ D | d v δ(g)}. Thus, ∀d ∈ cov({g}) : d v δ(g). Since ext is an
order reversing operator, we obtain: ∀A ∈ ext[cov({g})] : ext(δ(g)) ⊆ A. Thus
ext(δ(g)) is the smallest element of ext[cov({g})]. That is {g} = {ext(δ(g))}. ut

3.3 Linking Upper Approximations and Maximal Descriptions

Now that we have both upper approximations and maximal covering descrip-
tions, a judicious question would be:

Question 1. What is the relationship between covI(A) and A for A ⊆ G?

Before diving into more details, consider the example below.

Example 4. Consider Fig. 2. Extent A = {g2, g4} has cov(A) = {b, b → b, c}.
Hence, covI(A) = {b → b, c}. Therefore, ext[covI(A)] = {{g2, g4}, {g1, g2, g4}}.
Besides, A = {{g2, g4}}. Thus, counter-intuitively, A is not equal to ext[covI(A)].
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Furthermore, when D is an infinite poset, the set covI(A) might not “hold”
all the information contained in cov(A). That is to say: “knowing only maximal
covering descriptions does not allow us to deduce the set of covering ones”.
Speaking formally, covI(A) does not necessarily verify cov(A) =↓ covI(A).

4 Pattern Hyper-Structures and Completions

There is a standard construction how an ordered set of descriptions can be
turned in a semilattice of descriptions. For example, see [13], where a semilattice
on sets of graphs with labeled vertices and edges is constructed from the order
given by subgraph isomorphism relation. Let D = (D,v) be a poset and let
A(D) be the set of its antichains. It is possible to define a partial order by
letting S1, S2 ∈ A(D) [4]: S1 ≤ S2 iff ∀s1 ∈ S1 ∃s2 ∈ S2 : s1 v s2 (i.e. S1 ⊆↓ S2).
Please note that this relation does not define an order on ℘(D). It does define
only a pre-order since anti-symmetry does not hold (see [8]).

In fact, when D is finite, (A(D),≤) is a distributive lattice where the meet
and the join are given by S1 ∧ S2 = max(↓ S1∩ ↓ S2) and S1 ∨ S2 = max(S1 ∪
S2), respectively. Thus, one can build a pattern structure with (A(D),≤) which
embeds the pattern setup P = (G,D, δ) for any finite set of objects G. We call
such a pattern structure the antichain completion of P.

Definition 7. Let P = (G,D, δ) be a pattern setup, the antichain comple-
tion of P is the pattern setup denoted by PO and given by:

PO = (G, (A(D),≤), σ : g 7→ {δ(g)})

Consider the following question for the more general case where D is infinite:

Question 2. What is a necessary and sufficient condition on P that makes PO
a pattern structure?

We have seen that the finiteness of D is a sufficient condition (i.e. (A(D),≤) is
a distributive lattice), but not a necessary one. Definition 1 requires for PO that
for any A ⊆ G we have σ[A] = {{δ(g)} | g ∈ A} has a meet in (A(D),≤). This
condition is verified iff pattern setup P satisfies the following condition:

∀A ⊆ G : cov(A) = δ[A]` = ↓ max(δ[A]`) =↓ covI(A) (1)

and then covI(A) is the meet of σ[A] in (A(D),≤) (see Theorem 2).

Definition 8. A pattern setup (G,D, δ) is said to be a pattern hyper-structure
if condition (1) holds.

Note that the term hyper in pattern hyper-structure comes from the
notion of hyper-lattices briefly introduced in [19]. Note also that graphs ordered
by subgraph isomorphism relation [13] induces a pattern hyper-structure but not
a pattern structure. Same remark holds for sequential patterns [6,7] under the
assumption of the existence of the largest sequence 1 subsumed by all sequences.
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Remark 3. When D is infinite, poset (A(D),≤) remains to be a join-semilattice
but not necessarily has finite meets (as it is when D is finite). It was shown in
[4] that a necessary and sufficient condition on (A(D),≤) to have finite
meets is as follows:

∀S1, S2 ∈ A(D) ∃S ∈ A(D) :↓ S1∩ ↓ S2 =↓ S (2)

In this case, S represents the meet (infimum) of {S1, S2} in A(D); moreover,
(A(D),≤) becomes a distributive lattice. Requiring (A(D),≤) to have a meet is
a sufficient condition, but still not necessary for the antichain completion
to be a pattern structure. In fact, condition (2) implies condition (1) (case G
finite). Moreover, an example from [4] shows that condition (2) does not always
hold even if (D,v) is a meet-semilattice. Example 5 shows that condition (1)
does not always hold.

Example 5. Consider the pattern setup (G, (D,⊇), δ) with G = {g1, g2}, D =
{[a, b] ⊆ R | a, b ∈ R}\[1, 3], δ(g1) = {1} and δ(g2) = {3}. The considered
pattern setup does not verify condition (1) since δ[G]` is clearly not empty while
max(δ[G]`]) = ∅. (G, (D,⊇), δ) is thus not a pattern hyper-structure.

Theorem 1. For any pattern hyper-structure (G,D, δ), we have:

∀A ⊆ G : A = min
(
ext
[
covI(A)

])

Proof. Let A ∈ ℘(G). If cov(A) = ∅, then the property trivially holds since
covI(A) = cov(A) = ∅. Let A ∈↓ ext[D] (i.e. cov(A) 6= ∅). We need to show the
following equivalent proposition min(ext[cov(A)]) = min(ext[max(cov(A))]).

We start by showing min(ext[cov(A)]) ⊆ min(ext[max(cov(A))]). Let B ∈
min(ext[cov(A)]). Since B ∈ ext[cov(A)], ∃d ∈ cov(A) s.t. B = ext(d). Since
cov(A) =↓ max(cov(A)) ((G,D, δ) is a pattern hyper-structure), there exists c ∈
max(cov(A)) s.t. d v c. Since extent is an order revering mapping, C = ext(c) ⊆
ext(d) = B. Supposing that C ∈ ext[max(cov(A))] s.t. C ( B contradicts the
fact that B ∈ min(ext[cov(A)]) since C ( B and C ∈ ext[cov(A)]. It follows that
C = B ∈ ext[max(cov(A))]. Again, supposing that B 6∈ min(ext[max(cov(A)])
leads to a contradiction (∃D ∈ ext[max(cov(A)] ⊆ ext[cov(A)] s.t. D ( B while
B ∈ min(ext[cov(A)])). We conclude that B ∈ min(ext[max(cov(A))]).

It remains to show that min(ext[cov(A)]) ⊇ min(ext[max(cov(A))]). Sup-
pose the converse: ∃E ∈ min(ext[max(cov(A))]) such that E 6∈ min(ext[cov(A)]),
we have E ∈ ext[max(cov(A))] ⊆ ext[cov(A)]. Since E 6∈ min(ext[cov(A)]) and
ext[cov(A)] is finite, we obtain that ∃F ∈ min(ext[cov(A)]) such that F ( E.
The first inclusion implies F ∈ min(ext[max(cov(A))]). This is a contradiction,
since at the same time F ( E and E ∈ min(ext[max(cov(A))]).

We conclude that A = min(ext[cov(A)]) = min(ext[covI(A)]). ut

Theorem 1 answers question 1. It says that in a pattern hyper-structure
rather than considering all covering descriptions to compute A, it is sufficient to
consider only maximal covering ones. Theorem 2 answers question 2:
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Theorem 2. Let P = (G,D, δ) be a pattern setup, the antichain completion
of P is a pattern structure iff P is a pattern hyper-structure. Operators
extO and intO denote extent and intent of PO and are given by

(∀S ∈ A(D)) extO(S) =
⋂
ext[S] (∀A ⊆ G) intO(A) = covI(A)

Moreover, we have POext = {⋂S | S ⊆ Pext}. Note that G ∈ POext.

Proof. Let us show that if P is a pattern hyper-structure then PO is a pat-
tern structure. PO is a pattern structure iff every subset of σ[G] has a meet in
(A(D),≤). For A ⊆ G we have σ[A]` = {S ∈ A(D) | (∀g ∈ A)S ⊆↓ δ(g)} =
{S ∈ A(D) | S ⊆ δ[A]`} where δ[A]` and σ[A]` denote respectively the lower
bounds of δ[A] w.r.t. v and the lower bounds of of σ[A] w.r.t. ≤ (recall that
δ[A]` =

⋂
g∈A ↓ δ(g)). In this proof ↓ refers to the down-closure related to v.

– (⇒) Let A ⊆ G : δ[A]` =↓ max(δ[A]`). Thus σ[A]` = {S ∈ A(D) | S ⊆↓
max(δ[A]`)} = {S ∈ A(D) | S ≤ max(δ[A]`)}. Since max(δ[A]`) ∈ A(D),
so max(δ[A]`) is the meet of σ[A] in A(D).

– (⇐) PO is pattern structure is equivalent to say: ∀A ⊆ G, σ[A] has a meet
M ∈ A(D). That is, for A ⊆ G: ∀S ∈ A(D) : S ⊆ δ[A]` ⇔ S ⊆↓ M .
Particularly, for S = {d} with d ∈ D, we deduce that: ∀d ∈ δ[A]` : d ∈↓ M .
Thus, δ[A]` ⊆↓ M . Moreover, since M ⊆ δ[A]` (M ∈ σ[A]`) and ↓ is a
closure operator on (℘(D),⊆) we have by monotony ↓M ⊆ δ[A]` ⊆↓M . We
conclude that δ[A]` =↓ M (note that ↓ δ[A]` = δ[A]`). It follows that M =
max(δ[A]`) that is δ[A]` =↓ max(δ[A]`). This concludes the equivalence.

Let us now define intO and extO. The previous proof shown that for A ⊆ G
we have intO(A) = max(δ[A]`) = covI(A) (The meet of σ[A] is max(δ[A]`)).
For extO operator, let S ∈ A(D). We have: extO(S) = {g ∈ G | S ≤ σ(g)} =
{g ∈ G | S ⊆↓ δ(g)} = {g ∈ G | (∀d ∈ S) d v δ(g)} =

⋂
d∈S ext(d) =

⋂
ext[S].

Let us show that POext = {⋂S | S ⊆ Pext}. By definition of extO, the property
POext ⊆ {

⋂
S | S ⊆ Pext} holds. For the inverse inclusion, it is sufficient to show

that Pext ⊆ POext (since (POext,⊆) is closed under intersection). Let A ∈ Pext.
∃d ∈ D s.t. A = ext(d). Since {d} ∈ A(D), and extO({d}) = ext(d) = A. We
conclude that A ∈ POext and POext = {⋂S | S ⊆ Pext}. ut

There is a completion that transforms any pattern setup to a pattern struc-
ture. This completion relies on the Dedekind-MacNeille completion.

Definition 9. The family of subsets of D given by DM(D) = {A` | A ⊆ D} is
a
⋂

-structure and is called the Dedekind-MacNeille Completion of D.

Theorem 3. Let P = (G,D, δ) be a pattern setup. The Direct Completion
of P is the pattern structure denoted by PH and given by:

PH = (G, (DM(D),⊆), γ : g 7→ ↓ δ(g))

Operators extH and intH denote extent and intent of PH and are given by

(∀S ∈ DM(D)) extH(S) =
⋂
ext[S] (∀A ⊆ G) intH(A) = cov(A) = δ[A]`

Moreover, we have PHext = {⋂S | S ⊆ Pext}.
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(∅, {1})

({g1}, {c→ a→ b}) ({g2}, {c→ b→ b→ a}) ({g4}, {b→ b→ c})

({g1, g2}, {a, b, c}) ({g2, g4}, {b→ b, c}

({g1, g2, g3}, {a}) ({g1, g2, g4}, {b, c})

({g1, g2, g3, g4}, ∅)

Fig. 3.
Concept
lattice
B(PO).

Proof. According to definition 9, (DM(D),⊆) is a complete lattice closed under
intersection. Thus, the pattern setup PH is a pattern structure.

By definition, we have intH(A) =
⋂
g∈A ↓ δ(g) = δ[A]` = cov(A) since

the meet in PH is
⋂

. For the extent operator extH. Let S ∈ DM(D), we have
extH(S) = {g ∈ G | S ⊆↓ δ(g)} = {g ∈ G | (∀d ∈ S) d v δ(g)} =

⋂
ext[S].

Let us show that PHext = {⋂S | S ⊆ Pext}. Thanks to extH definition, prop-
erty POext ⊆ {

⋂
S | S ⊆ Pext} holds. For the inverse inclusion, it is sufficient to

show that Pext ⊆ PHext (since (PHext,⊆) is closed under intersection). Let A ∈ Pext,
∃d ∈ D such that A = ext(d). We have extH({d}`) = extH(↓ d) = {g ∈ G |↓
d ⊆↓ δ(g)} = {g ∈ G | d v δ(g)} = ext(d) = A. We conclude that A ∈ PHext and
PHext = {⋂S | S ⊆ Pext}, which completes the proof. ut
Example 6. Fig. 3 depicts the concept lattice B(PO) associated to the antichain
completion of the pattern hyper-structure P considered in Fig. 2 (i.e., the de-
scription space is augmented with the top element 1). One can see that there
are two new (underlined) extents {g1, g2} and {g1, g2, g3, g4} in POext\Pext. For
instance, consider the intent of {g1, g2} in the completion, each pattern d has
extent ext(d) ) {g1, g2}. Extent {g1, g2, g3, g4} is non coverable in P and thus
intO({g1, g2, g3, g4}) = max(cov({g1, g2, g3, g4})) = max(∅) = ∅.

5 Conclusion

In this paper, we have developed a better understanding of pattern setups, a
framework that models pattern spaces relying only on a poset. Next, we studied
the usual transformation of pattern setups to pattern structures using antichains.
We have shown that such a completion does not always produce a pattern struc-
ture unless the pattern setup is a pattern hyper-structure. Finally, we have shown
that a natural completion of a pattern setup to a pattern structure exists thanks
to the Dedekind-MacNeille completion. This work paves the way to answer an
important question: How to enumerate extents of a pattern setup without “visit-
ing” the whole set of extents of its associated completion to a pattern structure?

Acknowledgments

This work has been partially supported the Association Nationale Recherche
Technologie (ANRT) French program. Sections 1, 2 and 3.1 were written by

252 Aimene Belfodil, Sergei O. Kuznetsov, and Mehdi Kaytoue



Sergei O. Kuznetsov supported by the Russian Science Foundation under grant
17-11-01276 and performed at St. Petersburg Department of Steklov Mathemat-
ical Institute of Russian Academy of Sciences, Russia.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Data Engineering. pp.
3–14. IEEE (1995)

2. Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in
formal concept analysis with pattern structures. Ann. Math. Artif. Intell. 72(1-2),
129–149 (2014)

3. Belfodil, A., Kuznetsov, S.O., Robardet, C., Kaytoue, M.: Mining convex polygon
patterns with formal concept analysis. In: IJCAI. pp. 1425–1432 (2017)

4. Boldi, P., Vigna, S.: On the lattice of antichains of finite intervals. CoRR
abs/1510.03675 (2016), https://arxiv.org/abs/1510.03675
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Abstract. Close-by-One type algorithms are efficient algorithms for
computing formal concepts. They use a mathematical canonicity test to
avoid the repeated computation of the same concept, which is far more
efficient than methods based on searching. Nevertheless, the canonicity
test is still the most labour intensive part of Close-by-One algorithms
and various means of avoiding the test have been devised, including the
ability to inherit test failures at the next level of recursion. This paper
presents a new method for inheriting canonicity test failures in Close-
by-One type algorithms. The new method is simpler than the existing
method and can be amalgamated with other algorithm features to fur-
ther improve efficiency. The paper recaps an existing algorithm that does
not feature test failure inheritance and an algorithm that features the
existing method. The paper then presents the new method and a new
algorithm that incorporates it. The three algorithms are implemented on
a ‘level playing field’ with the same level of optimisation. Experiments
are carried out on the implemented algorithms, using a representative
range of data sets, to compare the number of inherited canonicity test
failures and the computation times. It is shown that the new algorithm,
incorporating the new method of inheriting canonicity test failures, gives
the best performance.

Keywords: Formal Concept Analysis · FCA · FCA algorithms · Com-
puting formal concepts · Canonicity test · Inheriting canonicity test
failures· Close-by-One · FCbO · In-Close

1 Introduction

In the development o fast algorithms to compute formal concepts, the discovery
of the so-called ‘canonicity test’, whereby the attributes in a concept could be
examined to determine its newness in the computation, gave rise to the orig-
inal Close-by-One (CbO) algorithm [8]. The canonicity test has proved to be
fundamental in the efficient computation of formal concepts, being far more ef-
ficient than previous methods of determining the newness of a concept based on
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searching, and was integral to the subsequent CbO algorithm presented in [6].
Nevertheless, the canonicity test is still the most labour intensive part of CbO-
type algorithms and various means of avoiding or improving the test have been
devised, giving rise to a number of advances in CbO-type algorithms includ-
ing FCbO [7, 9], In-Close2 [3] and In-Close4 [4]. FCbO introduced a combined
‘breadth and depth’ approach to computation that allowed child concepts to
fully inherit their parent’s attributes. In-Close2 then added a modified, ‘partial-
closure’, canonicity test to reduce the computation required in the test. FCbO
also introduced a technique whereby failed canonicity tests could be inherited,
thereby avoiding many canonicity tests. In-Close4 made use of empty intersec-
tions between the current concept extent and attribute-extents in the computa-
tion to also avoid canonicity tests.

This paper describes a new method of inheriting failed canonicity tests that
is simpler than the method used by FCbO. Furthermore, the method can be
amalgamated with existing efficiency features to further improve performance.

The rest of this paper is structured as follows: The paper will use the algo-
rithm In-Close4 [4] as the framework in which to incorporate the new inheri-
tance method, so Section 2 is a recap of that algorithm. Section 3 is a recap of
the FCbO algorithm, describing its method of inheriting failed canonicity tests.
Section 4 describes the new method of inheriting failed canonicity tests and in-
corporates it into In-Close4, creating a new algorithm, In-Close5. It should be
noted that In-Close1, In-Close2 and In-Close3 are previous versions of In-Close,
as presented in [2]. Section 5 describes the implementation of In-Close4, FCbO
and In-Close5 on a ‘level playing field’ using the same programming optimisa-
tions. Section 5 also shows how the new method of inheriting failed canonicity
tests can be amalgamated with existing efficiency features to further improve
performance. Section 6 presents a series of experiments and results, comparing
the performance of In-Close4, FCbO and In-Close5. Finally, Section 7 provides
some concluding remarks and ideas for further work.

2 Recap of the In-Close4 Algorithm

Below is a recap of the In-Close4 algorithm, as presented in [4]. In-Close4 com-
bines the efficiency of a partial-closure canonicity test [2] with full inheritance of
the parent intent. The full inheritance is achieved by adapting and incorporating
the combined breadth-first and depth-first approach of FCbO [7, 9]. The main
cycle is completed before passing to the next level, so that all the attributes of
a parent intent can be passed down to the next level. Child intents only have to
be finished off by adding attributes that are not in the parent intent. During the
main cycle, whilst the current intent is being closed, new extents that pass the
canonicity test are stored in a queue, similar to the queue in FCbO, to be pro-
cessed after the main cycle has completed. In-Close4 also makes use of empty
intersections when the current extent is intersected with the next attribute-
extent (next column) in the formal context: empty intersections are inherited so
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that they can be skipped at subsequent levels in the computation and, whenever
an empty intersection occurs, the algorithm forgoes the canonicity test.

The In-Close4 algorithm is invoked with an initial pair (A,B) = (X, ∅), where
A is a set of objects (extent) and B is a set of attributes (intent) and X is the
set of all objects in the formal context, and initial attribute y = 0. Y is the set of
all attributes in the formal context and Yj is the set of all attributes up to (but
not including) j. The algorithm is also invoked with an empty set of attributes,
P = ∅, in which to store subsequent empty intersections.

Note that forgoing the canonicity test after an empty intersection means
that the algorithm is incomplete, in that it will not compute the concept (Y, ∅).
However, it is a simple task to add it afterwards, if it exists: If Y ↓ = ∅ then add
(∅, Y ) to the set of computed concepts.

In-Close4

ComputeConceptsFrom((A,B), y, P)

for j ← y upto n− 1 do1

if j /∈ B and j /∈ P then2

C ← A ∩ {j}↓3

if C 6= ∅ then4

if C = A then5

B ← B ∪ {j}6

else7

if B ∩ Yj = C↑j then8

PutInQueue(C, j)9

else10

P ← P ∪ {j}11

ProcessConcept((A,B))12

Q← P13

while GetFromQueue(C, j) do14

D ← B ∪ {j}15

ComputeConceptsFrom((C,D), j + 1, Q)16

A line by line explanation of In-Close4 is as follows:
Line 1 - Iterate across the formal context, from a starting attribute y up to

attribute n− 1, where n is the number of attributes in the context.
Line 2 - Skip attributes already in B. Because intents inherit all of their

parent’s attributes, these can be skipped. Also skip any attributes in P as these
are inherited empty intersections - if the parent extent resulted in an empty
intersection, so will its children since they are all subsets of the parent.

Line 3 - Form an extent, C, by intersecting the current extent, A, with the
next attribute-extent (column of objects) in the context.

Line 4 - If the extent, C, is not empty...
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Line 5 - If the extent, C, equals the extent of the concept whose intent is
currently being closed, A, then...

Line 6 - ...add the current attribute, j, to the intent being closed, B.
Line 7 - Otherwise, test the canonicity using the partial-closure canonicity

test [1]: ↑ is the standard closure operator in FCA and ↑j is a modification
meaning “close up to, but not including, attribute j”.

Line 8 - If the canonicity test is passed...
Line 9 - ...place the new extent, C, and the location where it was found, j,

in a queue for later processing.
Line 10 - If the extent, C, is empty...
Line 11 - ... add the current attribute to P so that the empty intersection

can be inherited.
Line 12 - Pass concept (A,B) to the notional procedure ProcessConcept to

process it in some way (for example, storing it in a data base of concepts).
Line 13 - Store P in Q ready to pass the attributes resulting in empty

intersections to the next level.
Line 14 - The queue is processed by obtaining from the queue each new

extent and the location it was found.
Line 15 - Each new partial intent, D, inherits all the attributes from its

completed parent intent, B, along with the attribute, j, where its extent was
found.

Line 16 - Recursively call ComputeConceptsFrom to compute child concepts
from j + 1 and to complete the intent D.

3 Recap of the FCbO Algorithm

Below is a recap of the FCbO algorithm [7, 9] as presented in [2]. FCbO intro-
duced the feature of inherited canonicity test failures to improve the performance
of CbO-type algorithms, along with the combined breadth/depth first approach
to enable full inheritance of parent intents. The inheritance of test failures is
achieved by recording intents that are not canonical as N js, where j is the cur-
rent attribute, thus enabling subsequent levels to compare these failed intents
against the current one and thus avoid the computation of a repeated concept
without the need for the original canonicity test. FCbO is invoked with the ini-
tial concept (A,B) = (X,X↑), initial attribute y = 0 and a set of empty Nys,
{Ny = ∅ | y ∈ Y }.

Line 1 - Pass concept (A,B) to the notional procedure ProcessConcept to
process it in some way (for example, storing it in a set of concepts).

Line 2 - Iterate across the context, from starting attribute y up to attribute
n− 1.

Line 3 - M j is set to the latest intent that failed the canonicity test at
attribute j, N j .

Line 4 - Skip attributes in B and those that have an inherited record of
failure.
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FCbO

ComputeConceptsFrom((A,B), y, {Ny | y ∈ Y })
ProcessConcept((A,B))1

for j ← y upto n− 1 do2

M j ← N j
3

if j /∈ B and N j ∩ Yj ⊆ B ∩ Yj then4

C ← A ∩ {j}↓5

D ← C↑
6

if B ∩ Yj = D ∩ Yj then7

PutInQueue ((C,D), j)8

else9

M j ← D10

while GetFromQueue((C,D), j) do11

ComputeConceptsFrom((C,D), j + 1, {My | y ∈ Y })12

Line 5 - Otherwise, form an extent, C, by intersecting the current extent, A,
with the next column of objects in the context.

Line 6 - Close the extent to form an intent, D.
Line 7 - Perform the canonicity test.
Line 8 - If the concept is a new one, store it in a queue along with the

attribute it was computed at.
Line 10 - Otherwise set the record of failure for attribute j, M j , to the intent

that failed the canonicity test.
Line 11 - Get each stored concept from the queue...
Line 12 - ...and pass it to the next level, along with the stored starting at-

tribute for the next level and the failed intents from this level.

4 A New Method of Inheriting Failed Canonicity Tests

The method of inheriting failed canonicity tests employed by FCbO requires the
manipulation and storage of a two-dimensional array to represent intents that
fail the canonicity test. A total of n intents are required, and, although the use of
pointers in a optimised implementation avoids the need for copying intents, they
still need to be computed and stored. This results in computational overheads
so that, even though a significant number of canonicity test are avoided [9],
algorithms such as In-Close4 are still able to outperform FCbO [2,4].

However, it is possible to obtain the inheritance of failed canonicity tests
with a simpler method. Firstly consider the criteria for failure in In-Close4: the
test will fail if there exists an attribute in C↑j that is not in B ∩ Yj . In other
words, when there is an attribute before j (but not in the current intent, B)
who’s attribute-extent contains the extent, C - in which case the extent, C,
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will already have been computed. Now consider the starting attribute, y, for
the current cycle (Line 1 of In-Close4). Let us say, in a failed canonicity test,
that the smallest attribute in C↑j that is not in B ∩ Yj is i. If i ≥ y then an
extent, H, where C ⊆ H, will have been discovered in the current cycle at i (and
be waiting in the current queue). And there may be other extents, discovered
after i but before j that are also supersets of C and also in the queue. Thus, if
i ≥ y, the current attribute, j, will be required at the next level to be examined
by the children in the queue: C may be canonical with respect to one of the
children or j may be an attribute in the intent of a child and thus required to be
added. However, if i < y, the concept with extent C and its children will have
already been computed and processed. Thus no children in the current queue,
or subsequent children, need examine j. In other words, if i < y then j can be
inherited as a canonicity test failure - all subsequent children can skip j in the
cycle. All that is required is to maintain a set of such attributes that can be
passed down to the next level in the algorithm.

The new algorithm, In-Close5, below, is In-Close4 with the new method of
inheriting failed canonicity tests added. It is invoked in the same way as In-
Close4 but with the addition of an initially empty set of attributes, N = ∅, in
which to store canonicity test failures.

In-Close5

ComputeConceptsFrom((A,B), y, P,N)

for j ← y upto n− 1 do1

if j /∈ B and j /∈ P and j /∈ N then2

C ← A ∩ {j}↓3

if C 6= ∅ then4

if C = A then5

B ← B ∪ {j}6

else7

if B ∩ Yj = C↑j then8

PutInQueue(C, j)9

else10

if min(C↑j ) < y then11

N ← N ∪ {j}12

else13

P ← P ∪ {j}14

ProcessConcept((A,B))15

Q← P16

M ← N17

while GetFromQueue(C, j) do18

D ← B ∪ {j}19

ComputeConceptsFrom((C,D), j + 1, Q,M)20
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The new lines in In-Close5 are as follows:
Line 2 - As well as skipping inherited attributes in the intent, j /∈ B, and

inherited empty intersections, j /∈ P , the algorithm now also skips inherited
canonicity test failures, j /∈ N .

Line 11 - If the canonicity test (Line 8) is failed, a test is carried out com-
paring the smallest attribute in C↑j with y. If the attribute is smaller than y
then...

Line 12 - ...j is added to the set of canonicity test failures, N .
Line 17 - Store N in M ready to pass the canonicity test failures to the next

level.

5 Implementation

The three algorithms, In-Close4, FCbO and In-Close5, were implemented in
ANCII C using the same data structures, data pre-processing and level of opti-
misation to create a ‘level playing field’ for comparing their performance. The
key optimisations are described below.

The use of Bit-Arrays Implementations of CbO-type algorithms, such as
In-Close and FCbO, typically use a bit-array to represent the formal context.
This allows operations on the formal context, such as closure operations, to
be implemented using bit-wise operators in the manner of fine-grained parallel
processing. In a typical 64-bit architecture, this means that 64 cells of the formal
context can be operated on simultaneously. Using bits to represent cells of the
formal context also allows more of the context to be retained in cache memory.

Using a Local Boolean Copy of the Current Intent Typical implementa-
tions of CbO-type algorithms maintain a global data structure to store integer
representations of concept intents (integers mapping to formal attributes) but,
at the same time, also use a Boolean (bit-array) representation of the current
intent to facilitate an efficient implementation of the test for inherited attributes,
j /∈ B.

Efficient Implementation of the Partial-Closure Canonicity Test in
In-Close Algorithms In practice, it is not necessary to always close the new
extent up to the current attribute. It is only necessary to find the first instance
where B ∩ Yj and C↑j do not agree. Thus failure is typically detected before
j is reached, thus saving additional time. In FCbO, however, a full-closure, C↑

is always required because, if the test is passed, it provides the closure of the
concept intent, or, if the test is failed, it provides the failed intent to be stored in
M j . In In-Close, new concept intents are closed at the next level, during the main
cycle, whenever C = A by B ← B∪{j} (Lines 5 and 6 of In-Close4, for example).
Furthermore, given that the test C = A is provided at no computational cost, as
a by-product of the intersection in C ← A ∩ {j}↓, the overheads of the closure
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are close to zero. This also means that savings are made by In-Close algorithms
when canonicity tests succeed. Here, the partial closure, C↑j is carried out up
to j, compared to the full closure, C↑, in FCbO.

Amalgamation of Efficiency Features in In-Close5 In implementation, the
set of inherited empty intersections, the set of inherited canonicity test failures
and the local, Boolean, copy of the current intent can be amalgamated into a
single bit-array, in effect reducing the test in Line 2 of In-Close5, j /∈ B And j /∈ P
And j /∈ N to a single test, j /∈ Z, where Z = B ∪P ∪N . Lines 6, 12 and 14 will
all become Z ← Z∪{j}, thus updating the same bit-array in the implementation
(of course the update of the global set of intents in the implementation, required
by Line 6, remains unchanged). Amalgamating the three sets of attributes also
means there are overhead savings made from reduced parameter passing.

6 Evaluation of Performance

In this section, In-Close4, FCbO and In-Close5 are evaluated by comparing their
performance over a varied range of data sets. The experiments are divided into
three groups: 1) real data sets, 2) artificial data sets, and 3) randomised data
sets. In each case, the time taken to compute all formal concepts is measured
along with the number of canonicity tests carried out.

The experiments were conducted on a standard 64-bit Intel architecture,
using a PC with an Intel Core i7-2600 3.40GHz CPU and 8GB of RAM. To
cater for any inconsistency of system performance, due to background system
processes, for example, each experiment was conducted multiple times and the
average time taken for each.

Real Data Set Experiments. Four real data sets were used in the experi-
ments: Mushroom, Adult and Internet Ads, taken from the UCI Machine Learn-
ing Repository [5] and Student, an anonymised data set from an internal student
experience survey carried out at Sheffield Hallam University, UK. The data sets
were selected to represent a broad range of features, in terms of size and density,
and the UCI ones, in particular, are well known and used in FCA work.

The results of the experiments are given in Table 1 (timings) and Table 2
(canonicity tests).

In-Close5 was fastest for the Mushroom, Adult and Student data sets, and
equal fastest, with In-Close4, for the Internet Ads data set. In-Close5 used the
fewest canonicity tests for the Adult and Internet Ads data sets and was not far
behind FCbO for the Mushroom and Student data sets.

Artificial Data Set Experiments. Artificial data sets were used that, al-
though randomised, the randomisation was constrained by properties of real
data sets, such as many-valued attributes having a pre-defined number of unique

262 Simon Andrews



Table 1. Real data set results (timings in seconds).

Data set Mushroom Adult Internet Ads Student
|G| × |M | 8, 124× 126 32, 561× 124 3, 279× 1, 565 587× 145

Density 17.36% 11.29% 0.97% 24.50%
#Concepts 233,116 1,388,469 16,570 22, 760, 243

FCbO 0.23 1.46 0.21 8.80
In-Close4 0.19 0.88 0.07 4.65
In-Close5 0.18 0.85 0.07 4.31

Table 2. Real data set results (canonicity tests).

Data set Mushroom Adult Internet Ads Student

FCbO 331,106 2,029,933 363,568 40,630,663
In-Close4 429,974 1,707,707 91,029 53,162,649
In-Close5 332,449 1,667,052 67,715 41,048,752

values. Three data sets, M7X10G120K, M10X30G120K and T10I4D100K, were
used to provide a range of features in terms of size and density.

The timing results of the artificial data set experiments are given in Table
3 and the comparison of the number of canonicity tests carried out is given in
Table 4. For all three data sets, In-Close5 was quickest and performed the fewest
canonicity tests.

Table 3. Artificial data set results (timings in seconds).

Data set M7X10G120K M10X30G120K T10I4D100K
|G| × |M | 120, 000× 70 120, 000× 300 100, 000× 1, 000

Density 10.00% 3.33% 1.01%
#Concepts 1,166,326 4,570,493 2,347,376

FCbO 1.35 15.45 23.83
In-Close4 0.77 5.60 6.56
In-Close5 0.69 5.35 5.81

Random Data Set Experiments. Three series of random data experiments
were carried out, testing the effect of variation of the number of attributes,
context density, and number of objects, respectively:

– Attributes series - with 5% density and 5,000 objects, the number of at-
tributes was varied between 300 and 1,000. The number of concepts varied
from approximately 1,000,000 to 22,000,000.
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Table 4. Artificial data set results (canonicity tests).

Data set M7X10G120K M10X30G120K T10I4D100K

FCbO 4,640,906 167,814,522 75,281,105
In-Close4 2,360,015 29,686,007 21,262,544
In-Close5 2,339,951 26,593,944 14,907,484

– Objects series - with 5% density and 200 attributes, the number of objects
was varied between 30,000 and 100,000. The number of concepts varied from
approximately 4,000,000 to 22,000,000.

– Density series - with 200 attributes and 10,000 objects, the density of 1s in
the context was varied between 3 and 10%. The number of concepts varied
from approximately 200,000 to 19,000,000.

The results of the random data set timings are shown in the plots below. In all
three series, In-Close5 performed the fewest canonicity tests and was fastest. It
is interesting to note that In-Close4 often performed fewer canonicity tests than
FCbO (particularly apparent in the Object series). One might therefore deduce
that the Object series data sets gave rise to large numbers of empty intersections
- perhaps not surprising as the number of objects is increased at a relatively low
density in a randomised formal context.
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7 Conclusions

In conclusion, the performance of In-Close5 clearly demonstrates the efficiency
savings provided by the new method of inheriting canonicity test failures when
its results are compared to those of In-Close4 (the same algorithm but without
canonicity test failure inheritance). In-Close5 clearly outperforms FCbO, the
algorithm that features the existing method of inheriting canonicity test failures.
Although FCbO’s method inherits more test failures than the new method, the
simplicity of the new method warrants its attention as a useful contribution
to the area. It was shown in In-Close3 [2] that incorporating FCbO’s method
gave little improvement of performance, due to the computational overheads
of implementing it, whereas it is show here that the incorporation of the new
method does improve performance significantly.

An implementation of In-Close5 is available, free and open source, at https:
//sourceforge.net/projects/inclose/.
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Abstract. For the description logic EL, we consider the neighborhood relation
which is induced by the subsumption order, and we show that the corresponding
lattice of EL concept descriptions is distributive, modular, graded, and metric.
In particular, this implies the existence of a rank function as well as the
existence of a distance function.
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1 Introduction

Description Logics [3] are a family of well-founded languages for knowledge repre-
sentation with a strong logical foundation as well as a widely explored hierarchy of
decidability and complexity of common reasoning problems. The several reasoning tasks
allow for an automatic deduction of implicit knowledge from given explicitly represented
facts and axioms, and many reasoning algorithms have been developed. Description
Logics are utilized in many different application domains, and in particular provide
the logical underpinning of Web Ontology Language (OWL) [7] and its profiles.
EL is an example of a description logic with tractable reasoning problems, i.e., the usual

inference problems can be decided in polynomial time, cf. Baader, Brandt, and Lutz in [2].
From a perspective of lattice theory, EL has not been deeply explored yet. Of course, it is
apparent that the subsumptionv with respect to some TBox T constitutes a quasi-order.
Furthermore, in description logics supremums in the corresponding ordered set are usually
called least common subsumers, and these exist in all cases if either no TBox is present, or
if greatest fixed-point semantics are applied. Apart from that not much is known about
the lattice of EL concept descriptions. In this document, we shall consider the neighbor-
hood relation which is induced by the subsumption order, and we shall show that the lat-
tice of EL concept descriptions is distributive, modular, graded, and metric. In particular,
this implies the existence of a rank function as well as the existence of a distance function.

2 The Description Logic EL
In this section we shall introduce the syntax and semantics of the light-weight description
logic EL [3,2]. Throughout the whole document assume that Σ is a signature, i.e.,

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 267–278,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
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Σ = ΣC ]ΣR is a disjoint union of a set ΣC of concept names and a set ΣR of role
names. An EL concept descriptionover Σ is a term that is constructed by means of
the following inductive rule where A ∈ ΣC and r ∈ ΣR.

C ::= > | A | C uC | E

r.C

The set of all EL concept descriptions over Σ is denoted by EL(Σ). The size ||C|| of
an EL concept description C is the number of nodes in its syntax tree, and we can
recursively define it as follows: ||>|| := 1, ||A|| := 1, ||C uD|| := ||C||+ 1 + ||D||, and
|| E

r.C|| := 1 + ||C||. A concept inclusion is an expression C v D where both the
premise C as well as the conclusion D are concept descriptions. A terminological box
(abbrv.TBox) is a finite set of concept inclusions.

An interpretation I := (∆I, ·I) over Σ consists of a non-empty set ∆I, called the
domain, and an extension function ·I that maps concept names A ∈ ΣC to subsets
AI ⊆ ∆I and maps role names r ∈ ΣR to binary relations rI ⊆ ∆I ×∆I. Then,
the extension function is canonically extended to all EL concept descriptions by the
following definitions.

⊥I := ∅ >I := ∆I (C uD)I := CI ∩DI

(

E

r.C)I := {d ∈ ∆I | E

e ∈ ∆I : (d, e) ∈ rI and e ∈ CI }

A concept inclusion C v D is valid in I if CI ⊆ DI. We then also refer to I as a
model of C v D, and denote this by I |= C v D. Furthermore, I is a model of a TBox
T , symbolized as I |= T , if each concept inclusion in T is valid in I. The relation |=
is lifted to TBoxes as follows. A concept inclusion C v D is entailed by a TBox T ,
denoted as T |= C v D, if each model of T is a model of C v D too. We then also say
that C is subsumed by D with respect to T . A TBox T entails a TBox U, symbolized
as T |= U, if T entails each concept inclusion in U, or equivalently if each model of
T is also a model of U. In case T = ∅ we may ommit the prefix ”∅ |=”. However, then
we have to carefully interpret an expression C v D—it either just denotes a concept
inclusion, i.e., an axiom, without stating where it is valid; or it expresses that C is
subsumed by D (w.r.t.∅), i.e., CI ⊆ DI is satisfied in all interpretations I.

Two EL concept descriptions C and D are equivalent with respect to T , and we
shall write T |= C ≡ D, if T |= {C v D, D v C}. As a further abbreviation, let
T |= C vp D if both T |= C v D and T 6|= C w D, and we then say that C is strictly
subsumed by D with respect to T . In the sequel of this document we may also write
C ≤T D instead of T |= C ≤ D where ≤ is some suitable relation symbol, e.g., v.

It is not hard to find EL concept descriptions that are equivalent, i.e., have the
same extension in all interpretations, but are not equal. It is therefore helpful for
technical details to have a unique normal form for EL concept descriptions. According
to [4,9] an EL concept description C can be transformed into a reduced form that is
equivalent to C by exhaustive application of the reduction rule D uE 7→ D whenever
∅ |= D v E to the subconcepts of C (modulo commutativity and associativity of u).
It is immediately clear that each EL concept description C is essentially a conjunction
of other EL concept descriptions that are no conjunctions. In particular, if we define
Conj(C) as the set of all top-level conjuncts in C, then C has the form

d
Conj(C)

(modulo commutativity and associativity of u).
It is readily verified that the subsumption v∅ constitutes a quasi-order on EL(Σ).

Hence, the quotient of EL(Σ) with respect to the induced equivalence ≡∅ is an ordered
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set. In what follows we will not distinguish between the equivalence classes and their
representatives. Furthermore, > is the greatest element, and the quotient set EL(Σ)/≡∅
is a lattice that we shall symbolize by EL(Σ). It is easy to verify that the conjunction
u corresponds to the finitary infimum operation. In a description logic allowing for
disjunctions t, it dually holds true that the disjunction t corresponds to the finitary
supremum operation. Unfortunately, this does not apply to our considered description
logic EL. As an obvious solution, we can simply define the notion of a supremum
specifically tailored to the case of EL concept descriptions as follows. The supremum
or least common subsumer (abbrv.LCS) of two EL concept descriptions C and D is
an EL concept description E with the following properties.

1. ∅ |= {C v E, D v E}
2. For each EL concept description F , if ∅ |= {C v F, D v F}, then ∅ |= E v F .

Since all least common subsumers of C and D are unique up to equivalence, we may
denote a representative of the corresponding equivalence class by C ∨D. It is well
known that LCS-s always exist in EL; in particular, the least common subsumer C ∨D
can be computed, modulo equivalence, by means of the following recursive formula.

C ∨D =
l

(ΣC ∩ Conj(C)∩ Conj(D))

u
l
{ E

r. (E ∨ F) | r ∈ ΣR,

E

r.E ∈ Conj(C), and

E

r.F ∈ Conj(D)}

It is easy to see that the equivalence ≡∅ is compatible with both u and ∨. Of course,
the definition of a LCS can be extended to an arbitrary number of arguments in the
obvious way, and we shall then denote the LCS of the concept descriptions Ct, t ∈ T ,
by
∨{Ct | t ∈ T }.

3 The Neighborhood Problem

In this section we consider the neighborhood problem for EL. We have already seen that
the set of EL concept descriptions constitutes a lattice. It is only natural to consider
the question whether there exists a neighborhood relation which corresponds to the
subsumption order. Remark that for an order relation ≤ on some set P its neighborhood
relation or transitive reduction is defined as

≺ := � \ (� ◦�) = { (p, q) | p � q and there exists no x such that p � x � q }.

Clearly, if P is finite, then the transitive closure ≺+ equals the irreflexive part �.
However, there are infinite ordered sets where this does not hold true; even worse,
there are cases where ≺+ is empty. Consider, for instance, the set R of real numbers
with their usual ordering ≤. It is well-known that R is dense in itself, that is, for each
pair x � y, there is another real number z such that x � z � y—thus, there are
no neighboring real numbers. In general, we say that ≤ is neighborhood generated if
≺+ = � is satisfied. Clearly, ≤ is a neighborhood generated order relation if, and only
if, there is a finite path p = x0 ≺ x1 ≺ . . . ≺ xn = q for each pair p ≤ q. An alternative
formulation is the following. ≤ is not neighborhood generated if, and only if, there exists
some pair p � q such that every finite path p = x0 � x1 � . . . � xn = q can be refined,
that is, there is some index i and an element y such that xi � y � xi+1. Of course, if
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the order relation ≤ is bounded, i.e., for each element p ∈ P , there exists a finite upper
bound on the lengths of �-paths issuing from p, then ≤ is neighborhood generated.

In the sequel of this section, we shall address the neighborhood problem from different
perspectives. We first consider the general problem of existence of neighbors, and then
provide means for the computation of all upper neighbors and of all lower neighbors,
respectively, in the cases where these exist. As it will turn out, neighbors only exist
for all concept descriptions in the description logic EL without any TBox. The presence
of either a TBox or of the bottom concept description ⊥ prevents the existence of
neighbors for some concept descriptions. Furthermore, the extensions of EL with greatest
fixed-point semantics also allow for the construction of concept descriptions that do not
possess neighbors. Eventually, a complexity analysis shows that deciding neighborhood
in EL is in P, and that all upper neighbors of an EL concept description can be
computed in deterministic polynomial time.

Definition 1. Consider a signature Σ, let T be a TBox over Σ, and further assume
that C and D are concept descriptions over Σ. Then, C is a lower neighbor or a most
general strict subsumee of D with respect to T , denoted as T |= C ≺ D, if the following
statements hold true.

1. T |= C vp D
2. For each concept description E over Σ, it holds true that T |= C v E v D implies
T |= E ≡ C or T |= E ≡ D.

Additionally, we then also say that D is an upper neighbor or a most specific strict
subsumer of C with respect to T , and we may also write T |= D � C.

We first observe that neighborhood of concept descriptions is not preserved by the
concept constructors. It is easy to see that ∅ |= AuB ≺ A. However, it holds true that
∅ |= E

r. (AuB) vp

E

r.A u E

r.B vp

E

r.A, which shows ∅ 6|= E

r. (AuB) ≺ E

r.A.
Furthermore, we have that ∅ |= A uB u (A uB) ≡ A u (A uB), and consequently
∅ 6|= A u B u (A u B) ≺ A u (A u B). There are according counterexamples when
neighborhood with respect to a non-empty TBox is considered.

It is easily verified that neighborhood with respect to the empty TBox ∅ does not
coincide with neighborhood w.r.t. a non-empty TBox T . For instance, ∅ |= A ≺ > holds
true, but {> v A} |= A ≡ >. For the converse direction, consider the counterexample
where {A v B, B v A} |= AuB ≺ > and ∅ |= AuB vp A vp >.

3.1 The Empty TBox

Since Baader and Morawska showed in [4, Proof of Proposition 3.5] that v∅ is bounded,
we can immediately draw the following conclusion.

Proposition 2. The subsumption relation v∅ is neighborhood generated.

After this first promising result, we continue with describing the neighborhood
relation ≺∅. For this purpose, we define Upper(C) := {D | C ≺∅ D } as the set of all
upper neighbors of a concept description C, and accordingly Lower(C) contains exactly
all lower neighbors of C.

There is a well-known recursive characterization of v∅ as follows: C v∅ D if, and only
if, A ∈ Conj(D) implies A ∈ Conj(C) for each concept name A, and for each

E

r.F ∈
Conj(D), there is some

E

r.E ∈ Conj(C) such thatE v∅ F . With the help of that we can
prove that there is the following necessary condition for neighboring concept descriptions.
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Lemma 3. Let C and D be some reduced EL concept descriptions over a signature
Σ. If ∅ |= C ≺ D, then exactly one of the following statements holds true.

1. There is a concept name A ∈ ΣC such that ∅ |= C ≡ D uA.
2. It holds true that Conj(C) ∩ ΣC = Conj(D) ∩ ΣC, and there is exactly one ex-

istential restriction

E

r.E ∈ Conj(C) such that for all existential restrictionsE

s.F ∈ Conj(D), it holds true that r = s and ∅ |= E v F imply ∅ 6|= E ≡ F .

By means of the previous lemma we can deduce the following two propositions that
describe the sets Upper(C) and Lower(C).

Proposition 4. For each reduced EL concept description C over some signature Σ,
the following recursive equation is satisfied (modulo equivalence).

Upper(C) = {
l

Conj(C) \ {A} | A ∈ Conj(C)}

∪{
l

Conj(C) \ { E

r.E} ∪ { E

r.F | F ∈ Upper(E)} | E

r.E ∈ Conj(C)}

For instance, consider the concept description A u E

r.B u E

s. (AuB). It is in
reduced form and has three upper neighbors, namely

E

r.Bu E

s. (AuB), Au E

r.>uE

s. (AuB), and Au E

r.B u E

s.Au E

s.B.

Proposition 5. For every EL concept description C over some signature Σ, the
following equation is satisfied (modulo equivalence).

Lower(C) = {C uA | A ∈ ΣC and ∅ 6|= C v A}

∪
{
C u E

r.D

∣∣∣∣∣
r ∈ ΣR, D is most general such that ∅ 6|= C v E

r.D,

and ∅ |= C v E

r.E for all E with ∅ |= D ≺ E

}

While the recursive characterization of Upper in Proposition 4 immediately yields
a procedure for enumerating all upper neighbors of a given concept description, the
situation is not that apparent for lower neighbors. We can, however, constitute a
procedure for computing lower neighbors by means of Proposition 5. Let C be an EL
concept description over some signature Σ. Proceed as follows.

1. For each concept name A ∈ ΣC with ∅ 6|= C v A, output CuA as a lower neighbor
of C.

2. For each role name r ∈ ΣR, recursively proceed as follows.
(a) Let D := >.
(b) While ∅ |= C v E

r.D, replace D with a lower neighbor of D.
(c) If ∅ |= C v E

r.E for all E with ∅ |= D ≺ E, then output C u E

r.D as a
lower neighbor of C.

Eventually, we finish our investigations of ≺∅ with a complexity analysis. Using
induction on the role depth of C, we can prove that, for each reduced EL concept
description C, the set Upper(C) can be computed in deterministic time O(||C||2). It
is then apparent that the following proposition holds true.

Proposition 6. The neighborhood relation ≺∅ can be decided in polynomial time, that
is, ≺∅ ∈ P, and the mapping Upper is computable in deterministic polynomial time.
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3.2 The Bottom Concept Description

Now consider the extension of EL with the bottom concept description ⊥ the semantics
of which is defined as ⊥I := ∅ for any interpretation I. Then v∅ is not bounded, since
the following infinite chain exists.

∅ |= ⊥ vp . . . vp (

E

r.)n+1> vp (

E

r.)n> vp . . . vp

E

r.

E

r.> vp

E

r.> vp >

However, w∅ is still well-founded, since whenever a chain starts with ⊥, then the second
element must be a satisfiable concept description, that is, some C with C 6≡∅ ⊥, after
which the chain can only have a bounded number of elements. Furthermore, v∅ is not
neighborhood generated, as ⊥ does not have any upper neighbors. To see this, consider
a concept description C such that ⊥ vp ∅ C; it then follows that ⊥ vp ∅ C u

E

r.C vp ∅ C.

3.3 A Non-Empty TBox

A similar situation arises when considering subsumption with respect to a non-empty
TBox T . Firstly, consider the simple signature Σ where ΣC := {A} and ΣR := {r}
and define the TBox T := {> v E

r.>, A v E

r.A}. We obtain that the quotient
EL(Σ)/≡T consists of the classes [(

E

r.)nA] for n ∈N, and of the class [>]. Furthermore,
these concept descriptions are linearily ordered as follows.

T |= A vp

E

r.A vp

E

r.

E

r.A vp

E

r.

E

r.

E

r.A vp . . . vp >

Consequently, > does not have lower neighbors, and we also conclude that vT is not
bounded and wT is not well-founded.

Secondly, we show that there is a TBox T and a concept description without any
upper neighbors with respect to vT . We try to keep things simple, and consider a rather
small signature, namely Σ defined by ΣC := {A,B} and ΣR := {r}, and we define a
TBox by T := { E

r.A v A, B v A, B ≡ E

r.B}. It can be shown that, for each EL(Σ)
concept description C, either C is equivalent to B w.r.t.T or there exists an n ∈N such
that T |= B vp (

E

r.)nA vp C, i.e., B does not have upper neighbors with respect to T .

Proposition 7. There is some TBox T for which the subsumption relation vT is not
neighborhood generated.

3.4 Greatest Fixed-Point Semantics

Unfortunately, the situation is also not rosy for extensions of EL with greatest fixed-point
semantics [1,11]. It then also holds true thatv∅ is neither bounded nor neighborhood gen-
erated, and w∅ is not well-founded. One culprit is a concept description which represents
a cycle, for instance ν X.

E

r.X, the extension of which is maximal w.r.t. the property
of containing elements that have some other element in that extension as an r-successor.

4 The Distributive, Graded Lattice of EL Concept
Descriptions

The goal of this section is to explore the properties of the lattice of EL concept descrip-
tions ordered by subsumption with respect to the empty TBox. In particular, Blyth [5,
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Chapters 4 and 5] shows that it suffices to investigate whether this lattice is distributive
and of locally finite length, such that as an immediate corollary we then obtain that
also the Jordan-Dedekind chain condition is satisfied, which states that for each pair
C v∅ D, all maximal chains in the intervall [C,D] have the same length. Furthermore,
this length can then be utilized to define a distance between C and D, and in particular
to measure a distance from each concept description C to the top concept description
>, which we call the rank of C.

Lemma 8. For each signature Σ, the lattice EL(Σ) is distributive, i.e., for all concept
descriptions C,D,E ∈ EL(Σ), it holds true that

∅ |= C u (D ∨E) ≡ (C uD)∨ (C uE),

and ∅ |= C ∨ (D uE) ≡ (C ∨D)u (C ∨E).

Lemma 9. For each signature Σ, the lattice EL(Σ) is of locally finite length, that is,
for all concept descriptions C,D ∈ EL(Σ) with ∅ |= C v D, every chain in the interval
[C,D] has a finite length.

According to Blyth [5, Chapters 4 and 5], the following statements are obtained as
immediate consequences of Lemmas 8 and 9.

Corollary 10. 1. For each signature Σ, the lattice EL(Σ) is modular, i.e., for all
concept descriptions C,D,E ∈ EL(Σ), it holds true that

∅ |= (C uD)∨ (C uE) ≡ C u (D ∨ (C uE)),

∅ |= (C ∨D)u (C ∨E) ≡ C ∨ (D u (C ∨E)),

∅ |= C v D implies ∅ |= C ∨ (E uD) ≡ (C ∨E)uD,
and ∅ |= C w D implies ∅ |= C u (E ∨D) ≡ (C uE)∨D.

2. For each signature Σ, the lattice EL(Σ) is both upper and lower semi-modular,
i.e., for all concept descriptions C,D ∈ EL(Σ), it holds true that

∅ |= C uD ≺ C if, and only if, ∅ |= D ≺ C ∨D.

3. For each signature Σ, the lattice EL(Σ) satisfies the Jordan-Dedekind chain con-
dition, i.e., for all concept descriptions C,D ∈ EL(Σ) with ∅ |= C vp D, it holds
true that all maximal chains in the interval [C,D] have the same length.

The notion of a rank function can be defined for ordered sets. The following definition
specifically tailors this notion for the lattice EL(Σ).

Definition 11. An EL rank function is a mapping | · | : EL(Σ)→N with the following
properties.

1. |>| = 0
2. ∅ |= C ≡ D implies |C| = |D| (equivalence closed)
3. ∅ |= C vp D implies |C| 
 |D| (strictly order preserving)
4. ∅ |= C ≺ D implies |C|+ 1 = |D| (neighborhood preserving)

For an EL concept description C, we say that |C| is the rank of C.
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Proposition 12. For each C ∈ EL(Σ), let |C| := 0 if ∅ |= C ≡ >, and otherwise set

|C| := max{n+ 1 | E

D1, . . . ,Dn ∈ EL(Σ): ∅ |= C ≺ D1 ≺ . . . ≺ Dn ≺ >}.

Then, | · | is an EL rank function.

Since EL(Σ) satisfies the Jordan-Dedekind chain condition, we infer that in order
to compute the rank |C| of an EL concept description C over Σ with ∅ 6|= C ≡ >,
we simply need to find one chain ∅ |= C ≺ D1 ≺ D2 ≺ . . . ≺ Dn ≺ >, and then it
follows that |C| = n+ 1. Furthermore, |C| = 0 if ∅ |= C ≡ >.

Corollary 13. For each signature Σ, the lattice EL(Σ) is graded.

The next lemma provides an equation for the rank of a conjunction of n concept descrip-
tions. By induction over n, it follows from Lemma 9, Corollary 10, and [5, Theorem 4.6].

Lemma 14. Let C be a set of n EL concept descriptions over Σ. Then, the following
equation holds true.

|
l
C| =

n∑

i=1

(−1)i+1 ·
∑

D∈(Ci)

|
∨
D|

Let C = A1u. . .uAmu

E

r1.C1u. . .u

E

rn.Cn be a reduced EL concept description.
Then its rank can be computed as follows, cf. Lemma 14.

|C| = |A1 u . . .uAm u
E

r1.C1 u . . .u
E

rn.Cn|
= |A1 u . . .uAm|+ |

E

r1.C1 u . . .u

E

rn.Cn| − |>|
= m+ | E

r1.C1 u . . .u

E

rn.Cn|

Furthermore, it holds true that ∅ |= E

r.C ∨ E

s.D ≡ > if r 6= s. It follows that we
can further simplify the rank computation as follows.

| E

r1.C1 u . . .u

E

rn.Cn| = |
l
{
l
{ E

ri.Ci | i ∈ {1, . . . , n} and ri = r } | r ∈ ΣR }|

=
∑

r∈ΣR

|
l
{ E

ri.Ci | i ∈ {1, . . . , n} and ri = r }|

The rank of the conjunction of existential restrictions can be computed by means of
Lemma 14, and finally it is readily verified that the rank of one existential restrictionE

r.C satisfies the following equation.

| E

r.C| = 1 + |
l
{ E

r.D | ∅ |= C ≺ D }|

Definition 15. An EL metric or EL distance function is a mapping d : EL(Σ) ×
EL(Σ)→N with the following properties.

1. d(C,D) ≥ 0 (non-negative)
2. d(C,D) = 0 if, and only if, ∅ |= C ≡ D (equivalence closed)
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nD
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Fig. 1. Obtaining a distance function from the rank function

3. d(C,D) = d(D,C) (symmetric)
4. d(C,E) ≤ d(C,D) + d(D,E) (triangle inequality)

We then also say that d(C,D) is the distance between C and D.

Lemma 14 for the case n = 2 yields that in the rectangle shown in Figure 1 opposite
edges have the same length, where length means length of a maximal chain between the
endpoints. It is easy to see that |CuD| = |C|+mC = |D|+mD and |C∨D| = |C|−nC =
|D|−nD. Thus, we infer that mC = |CuD|−|C| = |D|−|C∨D| = nD, and similarily
thatmD = nC. Consequently, we can define an EL distance function in the following way.

Proposition 16. For all C,D ∈ EL(Σ), define

d(C,D) := |C uD| − |C ∨D|.

Then, d is an EL metric.

We can justify the name of a distance function as follows. If we consider the graph
of EL concept descriptions such that edges exist exactly between neighboring concept
descriptions, that is, if we consider the graph (EL(Σ),≺∅ ∪ �∅), then the distance
d(C,D) is the length of a shortest path between C and D.

Corollary 17. EL(Σ) is a metric lattice, i.e., a lattice which is also a metric space.

It is easy to verify that EL(Σ) is complete, not bounded, not precompact, not com-
pact, locally compact, proper if Σ is finite, neither connected nor path connected, and
separable. The induced topology τd is perfectly normal Hausdorff or T6. Furthermore, all
subsets are both open and closed, and all mappings f : EL(Σ)→ (X,d′) are continuous.

Lemma 18. Let C ∈ EL(Σ), then d(C,
∨
Upper(C)) = |Upper(C)|.

According the the previous lemma, we can compute ranks as follows.

1. Let D := C and r := 0.
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2. While ∅ 6|= D ≡ >, compute the set Upper(D) of upper neighbors of D, set
r := r+ |Upper(D)| and D :=

∨
Upper(D).

3. Return r.

In [6] Ecke, Peñaloza, and Turhan defined the notion of a concept similarity measure
as a function of type EL(Σ)× EL(Σ)→ [0,1], and then considered so-called relaxed
instances of concept descriptions with respect to ontologies. Simply speaking, a is a
relaxed instance of C if there is a concept that is similar enough to C and has a as an
instance. It is straight-forward to consider these relaxed instances also with respect to
the distance function we have just introduced. More formally, we define them as follows.

Definition 19. Consider an interpretation I over some signature Σ and a concept
description C ∈ EL(Σ), and let n ∈ N. Then, the expression

D≤ n.C is called a
relaxed concept description, and its extension is defined by

(

D≤ n.C)I :=
⋃
{DI | D ∈ EL(Σ) and d(C,D) ≤ n}.

Suppose that O is an ontology over some signature Σ, and further let a ∈ ΣI be
an individual name, C ∈ EL(Σ) a concept description, and n ∈N. We then say that
a is a relaxed instance of C with respect to O and distance threshold n, denoted as
O |= a @− D≤ n.C, if it holds true that aI ∈ (

D≤ n.C)I for each model I of O.
For transforming our distance function d into a similarity function s : EL(Σ) ×
EL(Σ) → [0,1] we can proceed as follows. We begin with transforming d into a
metric with range [0,1). For that purpose, we choose an order-preserving, sub-additive
function f : [0,∞)→ [0,1) with ker(f) = {0}. Note that a function f : [0,∞)→ R
is sub-additive if f ′′ < 0 and f(0) = 0. Then f ◦ d is such a metric with range [0,1).
Suitable functions are the following.

– f : x 7→ x
1+x or more generally f : x 7→ ( x

1+x)y for y > 0

– f : x 7→ 1− 1
2x or more generally f : x 7→ 1− yx for y ∈ (0,1)

Then, s := 1− f ◦ d is a similarity function on EL(Σ). It is easy to verify that then
s satifies the following properties which have been defined by Lehmann and Turhan
in [10], for all EL concept descriptions C,D,E over Σ.

1. s(C,D) = s(D,C) (symmetric)
2. 1 + s(C,D) ≥ s(C,E) + s(E,D) (triangle inequality)
3. ∅ |= C ≡ D implies s(C,E) = s(D,E) (equivalence invariant)
4. ∅ |= C ≡ D if, and only if, s(C,D) = 1 (equivalence closed)
5. ∅ |= C v D v E implies s(C,D) ≥ s(C,E) (subsumption preserving)
6. ∅ |= C v D v E implies s(C,E) ≤ s(D,E) (reverse subsumption preserving)

However, as it turns out such a similarity measure 1−f ◦d does not satisfy the property
of structural dependance. For instance, consider a signature Σ without role names and
such that ΣC := {A} ∪ {Bn | n ∈N}. It is now readily verified that

(1− f ◦ d)(Au
l
{B` | ` ≤ n},

l
{B` | ` ≤ n}) = 1− f(1)

for all n ∈ N, and since f(1) > 0 we conclude that the sequence does not converge
to 1 for n→∞.
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For extending our rank function | · | and our distance function d to EL⊥, we can
simply define |⊥| :=∞, d(⊥,⊥) := 0, and d(⊥,C) := d(C,⊥) :=∞ for ∅ |= C 6≡ ⊥.
When transforming the extended metric into a similarity measure then two concept
descriptions have a similarity of 0 if, and only if, exactly one of them is unsatisfiable. In
EL without the bottom concept description ⊥, a similarity of 0 can never occur when
utilizing the above construction.

We close this section with some first investigations on the complexities of decision
problems and computation problems related to the introduced rank function. So far, it
is unknown whether the rank function can be tractably computed, i.e., in deterministic
polynomial time. However, if |C| is computed in the näıve way by constructing an
arbitrary chain of neighbors fromC to> and then determinining its length, at least deter-
ministic exponential time with respect to the size of C is necessary. To see this, consider
the concept description Cn :=

E

r.
d{A1, . . . ,An} for each n ∈N. It is well-known that

there are exponentially many subsets of {A1, . . . ,An} with bn2 c elements; letX1, . . . ,X`
be an enumeration of these, and define Dm :=

d{ E

r.
d
Xi | i ∈ {m, . . . , `}}. Clearly,

then Cn vp ∅ D1 vp ∅ D2 vp ∅ . . . vp ∅ D` vp ∅ > is an exponentially long chain of strict

subsumptions. We conclude that |Cn| is at least exponential in n.
Given a concept description C and a natural number n (in binary encoding), then

we can decide in triple exponential time whether the rank of C is equal to n, at most n,
or at least n. A procedure can construct a chain of n neighbors and then check whether
> is reached. If n is fixed, then this requires only deterministic polynomial time.

5 Conclusion

We have investigated the neighborhood problem for the description logic EL and some of
its variants. We found that existence of neighbors can in general only be guaranteed for
the case of EL without a TBox, without the bottom concept description, and without
greatest fixed-point semantics. The presence of a TBox, the bottom concept description,
or greatest fixpoint semantics allow for the construction of concept descriptions that
do not have neighbors in certain directions. For the case of EL we proposed sound
and complete procedures for deciding neighborhood as well as for computing all upper
neighbors and all lower neighbors, respectively. Furthermore, we have shown that
deciding neighborhood and computing all upper neighbors requires only deterministic
polynomial time. The complexity of computing all lower neighbors is currently an open
question; possibly there exists a less expensive procedure than the one presented here.

As further results, we have proven that the lattice of EL concept descriptions is
distributive, modular, graded, and metric. In particular, this means that there exists a
rank function as well as a distance function on this lattice. Some first complexity results
on problems related to these rank and distance functions were found. However, the
exact complexities are currently unknown; we do not know whether the presented upper
bounds are sharp, and lower bounds are also not available. This implies that there could
possibly exist faster procedures for computing ranks and distances than those introduced
in this document. In particular, better formulas for computing or approximating ranks
of EL concept description should be sought. Some initial experiments could lead to the
claim that the rank of an EL concept description with role depth n, that is, for which
the nesting depth of existential quantifiers is n, could be n-exponential in the size of C.
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As an important consequence we infer that the algorithm NextClosures [8] can be
utilized for enumerating canonical bases of closure operators in EL.

Other possible future research could consider extensions to more expressive descrip-
tion logics. Of course, these logics should be considered without TBoxes for deciding
existence of neighbors in general. Eventually, a further direction for future research is a
more fine-grained characterization of existence of neighbors. That is, given a description
logic where neighbors need not exist in general, how can we decide whether a concept
description has neighbors and how can we enumerate these?

Acknowledgements The author gratefully thanks both Franz Baader and Bernhard
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Abstract. Functional dependencies (FDs) can be used for various im-
portant operations on data, for instance, checking the consistency and the
quality of a database (including databases that contain complex data).
Consequently, a generic framework that allows mining a sound, complete,
non-redundant and yet compact set of FDs is an important tool for many
different applications. There are different definitions of such sets of FDs
(usually called covers).
In this paper, we present the characterization of two different kinds of
covers for FDs in terms of pattern structures. The convenience of such a
characterization is that it allows for an easy implementation of efficient
mining algorithms which can later be easily adapted to other kinds of
similar dependencies. Finally, we present empirical evidence that the
proposed approach can perform better than a state-of-the-art FD miner
in large databases.

1 Introduction

Functional Dependencies (FDs) are a keystone of the relational database model,
since they allow checking the consistency, maintaining the quality of a database
[8, 10, 9], and guiding its design [20]. In addition, they have been used to study
information integration in the Web of data with varying degrees of quality [24,
25], or to check the data completeness in DBpedia [1]. Therefore, the computa-
tion of a succinct representation of a set of FDs (usually refered to as a cover), is
of interest to various fields of knowledge discovery and representation, specially,
if this computation can easily be extended to other kinds of dependencies (e.g.
relaxed versions of FDs [5]).

The computation of FD covers is a popular topic in the database literature.
As a reference, in [21], seven algorithms to mine FDs and compute their covers
are reviewed and grouped into three families: lattice transversal algorithms, dif-
ference/agree sets algorithms, and dependency induction algorithms. The char-
acterization of FDs with FCA and pattern structures is also presented in [2] and

c© Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp. 279–290,
ISBN 978–80–244–5328–6, Department of Computer Science, Palacký University
Olomouc, 2018.



a generalization to other types of FDs is given in [6]. For a detailed review on
the characterization of FDs and FCA, see [3].

In this paper, we characterize the representations of FD covers using pattern
structures, an extension of FCA dealing with complex object representations [18].

On the one hand, we adapt the definition of a canonical direct basis of im-
plications with proper premises [4, 22] to the formalism of pattern structures,
in order to prove that this basis is equivalent to a reduced non-redundant set
of FDs, better known as the canonical cover (Section 3.1). We show that the
canonical cover can be characterized using the arrow relation (Ö) between an
attribute and a pattern defined over a partition pattern structures (PPS). On the
other hand, we discuss on the relation between the Stem Base of implications [12]
with the Minimal Cover of dependencies, a sound, complete, non-redundant set
of FDs that has minimum cardinality w.r.t. any other equivalent cover (Sec-
tion 3.2). We show that the latter can be characterized by pseudo-extents of a
PPS.

Finally, in Section 4 we empirically compare these two ways of computing FD
covers with the algorithm TANE [16]. This algorithm is one of the most efficient
FD mining algorithms and according to [21], it is the base for the family of
“lattice transversal algorithms” serving as the baseline to validate our approach
with a state-of-the-art FD miner.

2 Theoretical Background

Let U be an ordered set of attributes, and let Dom be a set of values (a domain).
For the sake of simplicity, we assume that Dom is a numerical set. A tuple t
is a function t : U Ñ Dom, and a table T is a set of tuples. Usually a table is
represented as a matrix, as in Table 1, where the set of tuples (or objects) is T “
t t1, t2, . . . , t7 u with attributes U “ t a, b, c, d, e u. We use table, dataset, set of
tuples as equivalent terms. We overload the functional notation of a tuple in such
a way that, given a tuple t P T , we say that tpX Ď U) is a tuple with the values
of t in the ordered attributes xi P X defined as tpXq “ xtpx1q, tpx2q, . . . , tpxnqy.
For example, we have that t2pt a, c uq “ xt2paq, t2pcqy “ x2, 1y. In this article,
the set notation is dropped: instead of t a, b u we use ab.

2.1 Functional Dependencies and their Covers

Definition 1 ([23]). Let T be a set of tuples, and X,Y Ď U . A functional
dependency (FD) X Ñ Y holds in T if:

@t, t1 P T : tpXq “ t1pXq ùñ tpY q “ t1pY q
For instance, the functional dependency dÑ e holds in T (Table 1), whereas

the functional dependency e Ñ d does not hold since t4peq “ t5peq but t4pdq ‰
t5pdq.

For a given set of functional dependencies F , we can use the three Arm-
strong’s axioms (reflexivity, augmentation and transitivity) to derive a larger
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set of FDs [20]. We will call F˚ the set of FDs derived from F by reflexiv-
ity and augmentation, and F` the set of FDs derived by reflexivity, augmen-
tation and transitivity. Two sets of FDs F and H are said to be equivalent
F ” H ðñ F` “ H`.

Let F be a set of FDs from a database T , F is said to be sound if all FDs
in F hold in T . In addition, F is said to be complete if all FDs that hold in
T can be derived from F . Let X Ñ Y be any FD in F , then F is said to be
non-redundant if F ztX Ñ Y u ı F , and non-redundant w.r.t. augmentation iff
pF ztX Ñ Y uq˚ ‰ F˚

A set F is said to be left-reduced if for all X Ñ Y P F and Z Ĺ X we have
that pF ztX Ñ Y uq Y tZ Ñ Y u ı F . Dually, it is said to be right-reduced if for
all X Ñ Y P F and Z Ĺ Y we have that pF ztX Ñ Y uq Y tX Ñ Zu ı F . F is
said to be reduced if it is simultaneously left and right-reduced.

Let F be a reduced set of FDs, then G “ tX Ñ y | X Ñ Y P F, y P Y u
is the splitting of F and G ” F . Let F be a reduced set, its splitting is called
a canonical cover. A canonical cover is a left-reduced, non-redundant w.r.t. aug-
mentation set of FDs with a single element in their right hand side (a split
set) [19]. A different definition presents the canonical cover in a saturated ver-
sion requiring uniqueness in their left hand side [17] losing the single element
condition in the right hand side. For the sake of compatibility with FCA im-
plication covers we will favor the first definition. Notice that canonical covers
can be redundant w.r.t. transitivity. For example the canonical cover of Table 1
contains tc Ñ b, c Ñ e, d Ñ e, bd Ñ c, be Ñ cu where bd Ñ c would be
redundant w.r.t. transitivity as bdÑ bdeÑ c.

Finally, a set F is said to be a minimum cover if it has as few FDs as any
other equivalent set of FDs. For example, the minimum cover of Table 1 contains
FDs tc Ñ be, d Ñ e, be Ñ cu. Notice that the minimum cover is not restricted
to be reduced, so it is not presented with split sets. Secondly, the minimum cover
contains exactly one fewer FD than the canonical cover, namely bdÑ c.

2.2 Formal Concept Analysis, Implication Systems and FDs

For the sake of brevity we do not provide a description of the Formal Concept
Analysis (FCA) framework. The notation used in this article follows [13] where
K “ pG,M, Iq is a formal context of objects G, attributes M and incidence
relation I, with formal concepts pA,Bq where A1 “ B and B1 “ A.

Implications are relations established between attribute sets from a formal
context K. Implications are analogous to FDs and they can be used to character-
ize them [2]. Because of this, we will notate an implication similarly to an FD.
Implication systems (sets of implications) can also characterize FD covers [4].

An implication X Ñ Y holds in K for X,Y Ď M if Y Ď X2. Let T be a
set of tuples and U , a set of attributes in a table (such as the one in Table 1).
We define the set PairpT q “ `

T
2

˘
set of all subsets T with exactly two elements,

and the incidence set I such that ppti, tjq, xq P I ðñ tirxs “ tjrxs, @x P U ,
@ti, tj P T . It can be shown that an FD X Ñ Y holds in the database if and
only if X Ñ Y is an implication of the formal context K “ pPairpT q,U , Iq [13].
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K is called the binary codification of table T . For example, Table 3 contains the
binary codification of Table 1. In Table 3 we can observe the implication dÑ e
which can be verified as an FD in Table 1.

The previous statement entails that FDs and implications in K are in 1-1
correspondence. Moreover, the corresponding definition of a canonical cover of
FDs is equivalent to that of a canonical-direct unitary basis of implications as
shown in [4] where the equivalent left-minimal basis is described as containing
minimal functional dependencies, i.e. those in a canonical cover.

Table 1: Example of a table T
a b c d e

t1 1 1 1 1 1
t2 2 1 1 1 1
t3 3 1 2 2 2
t4 3 2 3 2 2
t5 3 1 2 3 2
t6 1 1 2 2 2
t7 1 1 2 4 2

Table 2: Representation context
a b c d e

δpaq ˆ
δpbq ˆ
δpeq ˆ
δpaq [ δpbq ˆ ˆ Ö Ö
δpaq [ δpeq ˆ ˆ
δpdq [ δpeq ˆ ˆ
δpaq [ δpdq [ δpeq ˆ Ö Ö ˆ ˆ
δpbq [ δpcq [ δpeq ˆ ˆ ˆ
δpaq [ δpbq [ δpcq [ δpeq ˆ ˆ ˆ Ö ˆ
δpbq [ δpcq [ δpdq [ δpeq Ö ˆ ˆ ˆ ˆ
δpaq [ δpbq [ δpcq [ δpdq [ δpeq ˆ ˆ ˆ ˆ ˆ

Table 3: Binary codification of Ta-
ble 1

a b c d e

pt1, t2q ˆ ˆ ˆ ˆ
pt1, t3q ˆ
pt1, t4q
pt1, t5q ˆ
pt1, t6q ˆ ˆ
pt1, t7q ˆ ˆ
pt2, t3q ˆ
pt2, t4q
pt2, t5q ˆ
pt2, t6q ˆ
pt2, t7q ˆ
pt3, t4q ˆ ˆ ˆ
pt3, t5q ˆ ˆ ˆ ˆ
pt3, t6q ˆ ˆ ˆ ˆ
pt3, t7q ˆ ˆ ˆ
pt4, t5q ˆ ˆ
pt4, t6q ˆ ˆ
pt4, t7q ˆ
pt5, t6q ˆ ˆ ˆ
pt5, t7q ˆ ˆ ˆ
pt6, t7q ˆ ˆ ˆ ˆ

2.3 Partition Pattern Structures

A Partition Pattern Structure (PPS) is a type of pattern structure [14] that deals
with, as the name suggests, object representations in the form of set partitions.
PPS have shown to be useful for mining biclusters [7] and, more importantly,
relations between partition pattern concepts have been used to characterize FDs
of different kinds [3].

The formalization of a database T with attributes U as a PPS is as follows. A
partition d of T is a set d Ď ℘pT q (powerset of T ) of disjoint non-empty subsets of
T such that for any two different elements Ki,Kj P d we have that KiXKj “ H
and

Ť
KPdK “ T . Let D be the set of all possible partitions of T , then any two

partitions d1,d2 P D can be ordered by a coarser/finer relation denoted d1 Ď d2

(d1 is finer than d2) iff p@ Ki P d1qpD Kj P d2q such that Ki Ď Kj . The
similarity operator is defined as d1 [ d2 “ tKi XKj |Ki P d1,Kj P d2u. From
this, it follows that pD,Ďq is a complete lattice with supremum and infimum
defined respectively as J “ ttT uu and K “ tttu | t P T u.

The set of attributes U is mapped onto D through a function δ which for a
given attribute x P U yields a partition δpxq P D representing the equivalence
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relations over T for values of attribute x. With this, we can configure the PPS
pU , pD,Ďq, δq with derivation operators X˝ “ d

xPX
δpxq denoting the equivalence

relations implied by attributes in X, and d˝ “ tx P U | δpxq Ď du denoting all
attributes with associated equivalence relations finer than d. pX,dq is a partition
pattern concept when X˝ “ d and d˝ “ X.

Theorem 1 (Proposition 2 in [3]). Let pPairpT q,U , Iq be the binary codifi-
cation of a table within a database, and pU , pD,Ďq, δq its PPS representation:

pW,Xq P pPairpT q,U , Iq ðñ pX,dq P pU , pD,Ďq, δq
The proof of Theorem 1 can be found in [3]. Theorem 1 presents an important

property of the PPS that states that X Ď U is an extent in pU , pD,Ďq, δq if and
only if it is also an intent in pPairpT q,U , Iq (the relation between the set of tuple
pairs W Ď PairpT q and the partition d P D can be formalized as well but it is
of no interest to our development). Theorem 1 is very important since it entails
that the lattices derived from pPairpT q,U , Iq and pU , pD,Ďq, δq are isomorphic.
Consequently, implication X Ñ Y in pPairpT q,U , Iq can be found as a relation
between extents in pU , pD,Ďq, δq (extent implication) such that Y Ď X˝˝.

3 Covers and Pattern Structures

In this section we present two different kinds of covers for FDs: canonical covers
(Section 3.1) and minimal covers (Section 3.2), as well as their characterization
in terms of Pattern Structures. This section uses existing well-known results in
FCA, which are reviewed here for the sake of readability.

Section 3.1 presents how a canonical cover for FDs can be computed using
PPS, according to the results in [4, 22]. Section 3.2 introduces a novel character-
ization of the minimum cover of FDs by means of pseudo-extents of PPS [13].
The interest of these results is not limited to computing FD covers, but also for
generalizations of FDs [3, 6].

3.1 Characterizing a Canonical Cover of FDs

The characterization of a canonical cover of FDs using FCA is straightforward.
In a nutshell, a canonical cover of FDs is analogous to a canonical direct unitary
basis of implications [4] as presented in Section 2.2. In this section we recall some
of these ideas and show how they can be simply adapted to the framework of
PPS.

Firstly, let pU , pD,Ďq, δq be a PPS, we define D “ td P D | d˝˝ “ du as
the set of all closed partition patterns in D. The formal context pU ,D, Jq with
pd, xq P J ðñ d Ď δpxq is called a representation context of pU , pD,Ďq, δq
and their corresponding concept lattices are isomorphic [18]. For the sake of
readability of the following definitions, we define the representation context as
pD,U , Jq instead of pU ,D, Jq (Table 2). By transitivity of equivalence, it is clear
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that pD,U , Jq is isomorphic to pPairpT q,U , Iq as defined in Section 2.3 and as
such, implications in pD,U , Jq correspond to FDs. For example, Table 2 (not
considering elements Ö) contains the representation context pD,U , Jq of the
PPS derived from Table 1. Notice that objects are closed intersections of object
representations, e.g. δpdq does not appear since δpdq˝˝ “ δpdq [ δpeq. With this,
the canonical direct basis of implications in pD,U , Jq (and thus, canonical cover
of FDs) is determined by the set of proper premises of elements in U .

Theorem 2 (Corollary 1 in [22]). X Ď Uztyu is a premise of y P U iff X is
a hypergraph transversal of HÖy defined as :

HÖy “ tppUztyuqqzd1 | d P D,d Ö yu
The set of all proper premises of y is the minimum hypergraph transversal
TrpHÖy q.
A detailed description on the development of Theorem 2 can be found in [22].
Providing a formal definition of hypergraph transversals is out of the scope
of this article, however we briefly mention that this formalization can also be
made considering set collections (instead of hypergraphs) and minimum hitting
sets (instead of minimum hypergraph transversals) [11]. This problem is also
analogous to the vertex cover problem [12].

Theorem 2 provides a formal description for the proper premises of a given
attribute y P U that in turn yields the canonical cover of functional dependencies.
However this approach requires the creation of the representation context which
is a middle step in the overall calculation process. Actually, by analyzing the
arrow relation between d and y we can observe that the representation context
is not necessary. Consider that in pD,U , Jq, d1 “ tx P U | pd, xq P Jp ðñ d Ď
δpxqqu and thus d1 is equivalent to d˝ for any d P D. Moreover, in pU , pD,Ďq, δq,
d˝ Ĺ h˝ ðñ h Ĺ d since h “ h˝˝ and d “ d˝˝. With this, we can rewrite the
arrow definition as follows.

d Ö y ðñ pd, yq R J and if d1 Ĺ h1 then ph, yq P J
ðñ d Ę δpyq and if d˝ Ĺ h˝ then h Ď δpyq
ðñ d Ę δpyq and if h Ĺ d then h Ď δpyq

The last result shows that d Ö y in pD,U , Jq can be defined directly over the
PPS. Intuitively, this definition corresponds to y Õ d in pU ,D, Jq and thus, in
pU , pD,Ďq, δq. With these elements we can finally propose a characterization for
the canonical cover of functional dependencies in pU , pD,Ďq, δq as follows.

Corollary 1. Let pU , pD,Ďq, δq be a partition pattern structure and TrpHq de-
note the hypergraph transversal of H, then with

Lcc “ tX Ñ y | y P U , X P TrpHÕy qu
HÕy “ tppUztyuqqzd1 | d P D, y Õ du

y Õ d ðñ d Ę δpyq and if h Ĺ d then h Ď δpyq
Lcc is a canonical cover of functional dependencies.
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For the running example, let us calculate the proper premises of attribute
c using the arrow relations in Table 3. We have c Õ pδpaq [ δpbqq and c Õ
pδpaq [ δpdq [ δpeqq. With this, we have the hypergraph HÕc “ ttd, eu, tbuu
for which the minimum transversal hypergraph is TrpHÕc q “ ttb, du, tb, euu.
Correspondingly, we have the FDs bdÑ c and beÑ c which are included in the
canonical cover.

3.2 Characterizing a Minimal Cover of FDs

We introduce a novel characterization of a minimal cover of FDs by means of
pseudo-intents, and its generalization using pseudo-extents of a PPS.

The stem base of implications, or Duquenne-Guigues basis [15], is a sound,
complete and non-redundant basis which also has minimum cardinality among
the sets of implications for a given formal context. We show how this can be
used to characterize a minimal cover of FDs in a rather simple manner. Prior to
introducing the stem base, let us define pseudo-closed sets [13].

Definition 2. (Pseudo-closed sets) Let P ÞÑ P 2 be a closure operator over a
set M, then P is a pseudo-closed set if and only if:

P ‰ P 2 (1)

Q Ĺ P and Q is a pseudo-closed set ùñ Q2 Ď P (2)

Given a formal context pG,M, Iq, pseudo-closed sets A Ď G are called
pseudo-extents, while pseudo-closed sets B Ď M are called pseudo-intents. A
stem base of implications, or Duquenne-Guigues basis, can be defined as follows:

Theorem 3 ([13]). (Duquenne-Guigues Basis) The set of implications:

L “ tP Ñ P 2 | P is a pseudo-intentu (3)

is sound, complete and non-redundant.

Theorem 4 ([13]). Every complete set of implications contains an implication
X Ñ Y with X2 “ P 2 for every pseudo-intent P of pG,M, Iq

Theorem 4 entails that the stem base of implications has minimum cardinality
with respect to any equivalent set of implications of pG,M, Iq. With this and
the previous observation that FDs are in 1-1 correspondence with implications
in pPairpT q,U , Iq, we can derive the following corollary.

Corollary 2. Let pPairpT q,U , Iq be the binary codification of a table with tuples
T and attributes U , the set of FDs L “ tP Ñ P 2 | P is a pseudo-intentu is a
minimal cover.

Corollary 2 provides a novel characterization of the minimal cover of FDs
through pseudo-intents of a formal context. Given the existing relation between
pPairpT q,U , Iq and pU , pD,Ďq, δq, we can generalize the characterization of the
minimal cover over the latter. Observe that in the PPS pU , pD,Ďq, δq, we main-
tain the notion of pseudo-extents for a pseudo-closed set X Ď U with X ÞÑ X˝˝.
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Fig. 1: Datasets and the
number of rows and
columns they contain.

Fig. 2: Performance
Comparison when in-
creasing tuples: FCA vs
TANE

Fig. 3: Performance
Comparison when in-
creasing attributes:
FCA vs TANE

Proposition 1. Let pU , pD,Ďq, δq be the PPS representation of a database, then
the set of functional dependencies Lmc defined below is a minimal cover.

Lmc “ tX Ñ X˝˝ | X is a pseudo-extentu (4)

The proof of Proposition 1 follows from Theorem 1 and the fact that for a
set X P U the closure operator X ÞÑ X2 is exactly equivalent to X ÞÑ X˝˝ and
consequently, the set of pseudo-intents in pPairpT q,U , Iq is the same as the set
of pseudo-extents in pU , pD,Ďq, δq. Thus, because of Corollary 2, Proposition 1
holds.

Table 4: Dataset details, Execution Times in Seconds, and Number of Mined
Rules for CCM (Canonical Cover Miner), MCM (Minimal Cover Miner) and
TANE. CC: Canonical Cover, MC: Minimal Cover. Datasets in boldface repre-
sent those in which FCA performed better than TANE.

CCM MCM TANE
Dataset # Tuples # Attributes # CC Deps Time [S] # MC Deps Time [S] # CC Deps Time [S]

Mushroom 8124 22 3605 23887 1509 12684 - -
Adult 48842 14 78 90.41 42 71.55 78 123.13
Credit 690 15 1099 3.07 253 1.82 1099 2.54
PGLW 17995 6 5 0.67 2 0.35 5 0.48
PGLW (2xA) 17995 12 38 1.81 15 1.18 38 7.45
Forest Fires 516 13 442 0.46 138 0.31 442 0.49
Forest Fires (2xT) 1032 13 442 1.27 138 0.78 442 2.34
ncvoter 1000 19 775 2.47 193 1.63 775 2.07
Diagnostics 120 8 37 0.08 17 0.06 37 0.06
Abalone 4177 8 137 0.41 40 0.29 137 0.32
CMC 1473 9 1 0.56 1 0.49 1 0.52
Hughes 401 12 3 0.12 3 0.17 3 0.06
Servo 167 4 1 0.05 1 0.03 1 0.02
Caulkins 1685 12 227 0.66 67 0.53 227 0.95
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4 Experimental Evaluation

In this section we present a brief experimental comparison of both introduced
approaches versus TANE [16], a state-of-the-art FD miner. TANE is a highly
optimized apriori -based algorithm that generates a canonical cover of FDs. The
goal of this evaluation is to study the comparative benefits of using FCA versus
a traditional approach such as TANE. TANE was re-implemented for our ex-
periments5. For the sake of repeatibility, the code used to run the experiments
was made available at GitHub. Both the minimal cover miner (MCM) 6, and
the canonical cover miner (CCM)7 were implemented using Python’s pipy FCA
library fca8.

Experiments were performed over 12 datasets extracted from the UCI Ma-
chine Learning repository9, the JASA Data Archive10 and Metanome’s repeata-
bility Web page11. Details on the number of rows and columns for each dataset
are provided in the first two columns of Table 4. In addition to these datasets,
we created synthetic versions by multiplying the rows or the columns of a given
dataset. Experiments were performed on a virtual machine with 4 cores running
at 2.7 Ghz and equipped with 32 GB of RAM memory.

4.1 Results & Discussion

Table 4 presents the main results of applying our approach and TANE on each
dataset to mine the Minimal Cover and the Canonical Cover, respectively. The
table contains the execution times for each approach and the number of depen-
dencies mined. Datasets in boldface represent those for which CCM or MCM
performed substantially better than TANE. For the Mushroom dataset, TANE
was not able to obtain results before running out of memory, thereby no infor-
mation is provided in the table. Table 4 also reports in two synthetic datasets,
namely PGLW (2xA) which contains two horizontal copies of the PGLW dataset
resulting in twice as many attributes. Forest Fires (2xT) contains two vertical
copies of Forest Fires resulting in twice as many tuples. All Canonical Covers
mined by TANE have been reduced to a Minimal Cover to verify the consistency
of our approach.

Out of the 12 datasets, CCM and MCM performed better in the largest
(both in rows and columns). This is better illustrated in Figure 1 where datasets
are represented as points in a number of rows-number of columns space. Circles
represent datasets for which CCM or MCM performed better while diamonds,
where TANE did. Notice that the X axis is provided in logarithmic scale. The
figure shows that most of the datasets where TANE performs better are in

5 https://github.com/codocedo/tane/tree/cla18
6 https://github.com/codocedo/fd_miner/tree/cla18
7 https://github.com/codocedo/uis_miner/tree/cla18
8 https://pypi.org/project/fca/
9 https://archive.ics.uci.edu/ml/index.php

10 http://lib.stat.cmu.edu/jasadata/
11 https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html
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the lower-left region of the figure, representing small datasets. FCA-based ap-
proaches perform better in datasets in all other regions, including the upper-right
which contains datasets with many rows and columns.

Synthetic datasets in Table 4 show evidence that FCA scales better when
duplicating the dataset. When duplicating attributes the difference is partic-
ularly dramatic since TANE is over 13 times slower while our approach, only
3. To study this further, we created two sets of synthetic datasets. The first set
(vertical set) was created by incrementally multiplying vertically the Diagnostics
datasets (with 8 attributes and 120 tuples) generating 19 versions of 240, 360,
480 tuples, up to a dataset containing 2400 tuples. The second set (horizontal
set) was created using the same idea but in a horizontal manner generating 19
versions of 16, 24, 32, up to 160 attributes. Since most of the datasets of the
second set were too big for TANE, they were trunked to 40 tuples.

Figure 2 depicts the increasing time for CCM, MCM and TANE on the
vertical set, i.e. when increasing the number of tuples. We can observe that all
three approaches scale linearly w.r.t. the number of tuples, even when CCM and
MCM seem to have a more stable behavior. Vertical multiplication of datasets
yield the same number of FDs than the original set, since the relation between
attributes remains unchanged. Thus, we can assume that other algorithms based
on TANE could achieve a similar performance to CCM or MCM provided some
optimizations.

On the other hand, this do not seem to be the case for the horizontal set.
Figure 3 shows that CCM and MCM remain very stable when varying the num-
ber of attributes, while TANE’s execution time grows exponentially. Indeed,
this great difference in performance is due to the way in which we use FCA to
find FDs which differs from TANE’s strategy. Using FCA we calculate closures
which quickly group attribute copies avoiding unnecessary intersections. Instead,
TANE computes each attribute combination rendering the exponential growth
in the computation time. We stress that this is not simply an extreme case from
which our approach takes advantage, but actually a very good illustration of the
benefits of using a closure operator to navigate the space of FDs. Closures en-
able CCM and MCM to avoid unnecessary computations not only when we have
redundant attributes, but also whenever possible in the lattice of the powerset
of attributes. Finally, we do not discuss on the differences between CCM and
MCM strategies as these are detailed in [22].

5 Conclusions

We have presented a new characterization of a minimal cover of functional de-
pendencies (FDs) by means of the stem base (or Duquenne-Guigues basis) of a
partition pattern structure. We have presented the mechanisms through which
this characterization can be exploited to efficiently mine the minimal cover. Fur-
thermore, we have described the algorithms that implement these mechanisms
and show empirical evidence that our characterization performs better than a
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state-of-the-art FD miner, namely TANE, in larger databases containing many
rows and columns.
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95, 5–18 (1986)

Characterizing Covers of Functional Dependencies using FCA 289
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Gély, Alain, 105

Haraguchi, Makoto, 93
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Železný, Filip, 1



Editors: Dmitry I. Ignatov, Lhouari Nourine

Title: CLA 2018, Proceedings of the Fourteenth International
Conference on Concept Lattices and Their Applications

Technical Editor: Jan Outrata, jan.outrata@upol.cz
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